
MicroProfile Telemetry Tracing
MicroProfile Telemetry Team (Roberto Cortez, Emily Jiang, Bruno Baptista, Jan

Westerkamp, Felix Wong, Yasmin Aumeeruddy)

1.0-RC7, October 25, 2022: Draft

Table of Contents
Copyright . 2

Eclipse Foundation Specification License . 2

Disclaimers . 2

Introduction. 4

Architecture . 5

Automatic Instrumentation . 5

Manual Instrumentation . 5

@WithSpan . 5

Obtain a SpanBuilder . 6

Obtain the current Span. 7

Agent Instrumentation . 8

Access to the OpenTelemetry Tracing API . 8

Configuration . 9

Semantic Conventions. 9

MicroProfile Attributes . 9

Tracing Enablement. 10

MicroProfile OpenTracing . 11

MicroProfile Telemetry and MicroProfile OpenTracing . 12

Specification: MicroProfile Telemetry Tracing

Version: 1.0-RC7

Status: Draft

Release: October 25, 2022

1

Copyright
Copyright (c) 2022 , 2022 Eclipse Foundation.

Eclipse Foundation Specification License
By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation, Inc. <<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY
DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE

2

DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.
:sectnums:

3

Introduction
In cloud-native technology stacks, distributed and polyglot architectures are the norm. Distributed
architectures introduce a variety of operational challenges including how to solve availability and
performance issues quickly. These challenges have led to the rise of observability.

Telemetry data is needed to power observability products. Traditionally, telemetry data has been
provided by either open-source projects or commercial vendors. With a lack of standardization, the
net result is the lack of data portability and the burden on the user to maintain the
instrumentation.

The OpenTelemetry project solves these problems by providing a single, vendor-agnostic solution.

4

https://opentelemetry.io

Architecture
OpenTelemetry is a set of APIs, SDKs, tooling and integrations that are designed for the creation and
management of telemetry data such as traces, metrics, and logs.

This specification defines the behaviors that allow MicroProfile applications to easily participate in
an environment where distributed tracing is enabled via OpenTelemetry (a merger between
OpenTracing and OpenCensus).

This document and implementations MUST comply with the following OpenTelemetry 1.13
specifications:

• OpenTelemetry Overview

• Tracing API

• Baggage API

• Context API

• Resource SDK

IMPORTANT
The Metrics and Logging integrations of OpenTelemetry are out of scope of
this specification. Implementations are free to provide support for both
Metrics and Logging if desired.

This specification supports the following three types of instrumentation:

• Automatic Instrumentation

• Manual Instrumentation

• Agent Instrumentation

Automatic Instrumentation
Jakarta RESTful Web Services (server and client), and MicroProfile REST Clients are automatically
enlisted to participate in distributed tracing without code modification as specified in the Tracing
API.

These should follow the rules specified in the Semantic Conventions section.

Manual Instrumentation
Explicit manual instrumentation can be added into a MicroProfile application in the following
ways:

@WithSpan

Annotating a method in any Jakarta CDI aware beans with the
io.opentelemetry.instrumentation.annotations.WithSpan annotation. This will create a new Span

5

https://opentelemetry.io
https://opentelemetry.io
https://opentracing.io
https://opencensus.io
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.13.0/specification/overview.md
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.13.0/specification/trace/api.md
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.13.0/specification/baggage/api.md
https://github.com/open-telemetry/opentelemetry-specification/tree/v1.13.0/specification/context
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.13.0/specification/resource/sdk.md
https://opentelemetry.io
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.13.0/specification/trace/api.md
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.13.0/specification/trace/api.md

and establish any required relationships with the current Trace context.

Method parameters can be annotated with the
io.opentelemetry.instrumentation.annotations.SpanAttribute annotation to indicate which method
parameters should be part of the Trace.

Example:

@ApplicationScoped
class SpanBean {
 @WithSpan
 void span() {

 }

 @WithSpan("name")
 void spanName() {

 }

 @WithSpan(kind = SpanKind.SERVER)
 void spanKind() {

 }

 @WithSpan
 void spanArgs(@SpanAttribute(value = "arg") String arg) {

 }
}

Obtain a SpanBuilder

By obtaining a SpanBuilder from the current Tracer and calling
io.opentelemetry.api.trace.Tracer.spanBuilder(String). In this case, it is the developer’s
responsibility to ensure that the Span is properly created, closed, and propagated.

Example:

6

@RequestScoped
@Path("/")
public class SpanResource {
 @Inject
 Tracer tracer;

 @GET
 @Path("/span/new")
 public Response spanNew() {
 Span span = tracer.spanBuilder("span.new")
 .setSpanKind(SpanKind.INTERNAL)
 .setParent(Context.current().with(this.span))
 .setAttribute("my.attribute", "value")
 .startSpan();

 span.end();

 return Response.ok().build();
 }
}

NOTE
Start and end a new Span will add a child Span to the current one enlisted by the
automatic instrumentation of Jakarta REST applications.

Obtain the current Span

By obtaining the current Span to add attributes. The Span lifecycle is managed by the
implementation.

Example:

@RequestScoped
@Path("/")
public class SpanResource {
 @GET
 @Path("/span/current")
 public Response spanCurrent() {
 Span span = Span.current();
 span.setAttribute("my.attribute", "value");
 return Response.ok().build();
 }
}

Or with CDI:

7

@RequestScoped
@Path("/")
public class SpanResource {
 @Inject
 Span span;

 @GET
 @Path("/span/current")
 public Response spanCurrent() {
 span.setAttribute("my.attribute", "value");
 return Response.ok().build();
 }
}

Agent Instrumentation
Implementations are free to support the OpenTelemetry Agent Instrumentation. This provides the
ability to gather telemetry data without code modifications by attaching a Java Agent JAR to the
running JVM.

If an implementation of MicroProfile Telemetry Tracing provides such support, it must conform to
the instructions detailed in the OpenTelemetry Java Instrumentation project, including:

• Agent Configuration

• Suppressing Instrumentation

Both Agent and MicroProfile Telemetry Tracing Instrumentation (if any), must coexist with each
other.

Access to the OpenTelemetry Tracing API
An implementation of MicroProfile Telemetry Tracing must provide the following CDI beans for
supporting contextual instance injection:

• io.opentelemetry.api.OpenTelemetry

• io.opentelemetry.api.trace.Tracer

• io.opentelemetry.api.trace.Span

• io.opentelemetry.api.baggage.Baggage

Calling the OpenTelemetry API directly must work in the same way and yield the same results:

• io.opentelemetry.api.GlobalOpenTelemetry.get()

• io.opentelemetry.api.trace.Span.current()

• io.opentelemetry.api.baggage.Baggage.current()

To obtain the Tracer with the OpenTelemetry API, the consumer must use the exact same

8

https://github.com/open-telemetry/opentelemetry-java-instrumentation/tree/v1.19.0
https://opentelemetry.io/docs/instrumentation/java/automatic/agent-config/
https://opentelemetry.io/docs/instrumentation/java/automatic/agent-config/#suppressing-specific-auto-instrumentation

instrumentation name and version used by the implementation. Failure to do so, may result in a
different Tracer and incorrect handling of the OpenTelemetry data.

Configuration
OpenTelemetry must be configured by MicroProfile Config following the configuration properties
detailed in:

• OpenTelemetry SDK Autoconfigure (excluding properties related to Metrics and Logging)

• Manual Instrumentation

An implementation may opt to not support a subset of configuration properties related to a specific
configuration. For instance, otel.traces.exporter is required but if the implementation does not
support jaeger as a valid exporter, then all configuration properties referring to
otel.tracer.jaeger.* are not required.

Semantic Conventions
The Trace Semantic Conventions for Spans and Attributes must be followed by any compatible
implementation.

All attributes marked as required must be present in the context of the Span where they are
defined. Any other attribute is optional. Implementations can also add their own attributes.

MicroProfile Attributes

Other MicroProfile specifications can add their own attributes under their own attribute name
following the convention mp.[specification short name].[attribute name].

Implementation libraries can set the library name using the following property:

mp.telemetry.tracing.name

9

https://github.com/open-telemetry/opentelemetry-java/tree/v1.19.0/sdk-extensions/autoconfigure
https://opentelemetry.io/docs/instrumentation/java/manual/
https://github.com/open-telemetry/opentelemetry-specification/tree/v1.13.0/specification/trace/semantic_conventions

Tracing Enablement
By default, MicroProfile Telemetry Tracing is deactivated.

In order to enable any of the tracing aspects, the configuration otel.sdk.disabled=false must be
specified in any of the configuration sources available via MicroProfile Config.

IMPORTANT

This is a deviation from the OpenTelemetry Specification version 1.14.0 that
specifies this configuration property officially, where OpenTelemetry is
activated by default!

But in fact, it will be activated only by adding it’s dependency to the
application or platform project. To be able to add MicroProfile Telemetry
Tracing to MicroProfile implementations by default without side effects, this
deviating behaviour has been defined here (see also MicroProfile Telemetry
and MicroProfile OpenTracing).

The original definition for this configuration property and the corresponding
OTEL_SDK_DISABLED environment variable is specified in the OpenTelemetry
Environment Variable Specification version 1.14.0 and it’s General SDK
Configuration.

This property is read once when the application is starting. Any changes afterwards will not take
effect unless the application is restarted.

10

https://github.com/open-telemetry/opentelemetry-specification/blob/v1.14.0/specification/overview.md
https://opentelemetry.io
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.14.0/specification/sdk-environment-variables.md#opentelemetry-environment-variable-specification
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.14.0/specification/sdk-environment-variables.md#opentelemetry-environment-variable-specification
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.14.0/specification/sdk-environment-variables.md#general-sdk-configuration
https://github.com/open-telemetry/opentelemetry-specification/blob/v1.14.0/specification/sdk-environment-variables.md#general-sdk-configuration

MicroProfile OpenTracing
MicroProfile Telemetry Tracing supersedes MicroProfile OpenTracing. Even if the end goal is the
same, there are some considerable differences:

• Different API (between OpenTracing and OpenTelemetry)

• No @Traced annotation

• No specific MicroProfile configuration

• No customization of Span name through MicroProfile API

• Differences in attribute names and mandatory ones

For these reasons, the MicroProfile Telemetry Tracing specification does not provide any migration
path between both projects. While it is certainly possible to achieve a migration path at the code
level and at the specification level (at the expense of not following the main OpenTelemetry
specification), it is unlikely to be able to achieve the same compatibility at the data layer.
Regardless, implementations are still free to provide migration paths between MicroProfile
OpenTracing and MicroProfile Telemetry Tracing.

If a migration path is provided, the bridge layer provided by OpenTelemetry should be used. This
bridge layer implements OpenTracing APIs using OpenTelemetry APIs (more details can be found
from OpenTracing Compatbility. The bridge layer takes OpenTelemetry Tracer and exposes as
OpenTracing Tracer. See the example below.

//From the global OpenTelemetry configuration
Tracer tracer1 = OpenTracingShim.createTracerShim();
//From a provided OpenTelemetry instance oTel
Tracer tracer2 = OpenTracingShim.createTracerShim(oTel);

Afterwards, you can then register the tracer as the OpenTracing Global Tracer:

GlobalTracer.registerIfAbsent(tracer);

11

https://github.com/open-telemetry/opentelemetry-specification/blob/v1.13.0/specification/compatibility/opentracing.md

MicroProfile Telemetry and MicroProfile
OpenTracing
If MicroProfile Telemetry and MicroProfile OpenTracing are both present in one application, it is
advised only to enable one of them. Otherwise, no portable behaviour may occur.

12

	MicroProfile Telemetry Tracing
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	Introduction
	Architecture
	Automatic Instrumentation
	Manual Instrumentation
	@WithSpan
	Obtain a SpanBuilder
	Obtain the current Span

	Agent Instrumentation
	Access to the OpenTelemetry Tracing API
	Configuration
	Semantic Conventions
	MicroProfile Attributes

	Tracing Enablement
	MicroProfile OpenTracing
	MicroProfile Telemetry and MicroProfile OpenTracing

