
Technology Compatibility Kit
Reference Guide for Jakarta Core

Profile

Preface
This guide describes how to download, install, configure, and run the Technology Compatibility Kit
(TCK) used to verify the compatibility of an implementation of the Jakarta Core Profile.

Table of Contents
Preface. 1

Who Should Use This Book . 2

Before You Read This Book . 2

How This Book Is Organized . 2

1. Introduction (Core Profile TCK) . 3

1.1. TCK Primer . 3

1.2. Compatibility Testing . 3

1.3. Compatibility Requirements . 4

1.4. About the Jakarta Core Profile TCK . 8

2. Appeals Process. 9

2.1. What challenges to the TCK may be submitted? . 9

2.2. How these challenges are submitted? . 9

2.3. How and by whom challenges are addressed? . 10

2.4. How accepted challenges to the TCK are managed? . 10

3. Installation. 10

3.1. Obtaining the Software . 10

3.2. The TCK Environment . 10

4. Core Profile TCK Configuration. 11

4.1. TCK Properties. 11

4.2. Standalone TCK Configuration . 11

5. Reporting . 12

5.1. Maven, Failsafe, Surefire and TestNG . 12

6. Running the Signature Tests . 12

6.1. Running the Component Specification Signature Tests . 13

7. Executing (Core Profile TCK) . 13

8. WildFly Example . 13

1

The Core Profile TCK is built atop Junit5 framework and Arquillian platform. The Core Profile TCK
uses the Arquillian version 1.7.0.Alpha10 to execute the test suite.

The Core Profile TCK is provided under Apache Public License 2.0.

Who Should Use This Book
This guide is for implementors of the Jakarta Core Profile 10.0 technology to assist in running the
test suite that verifies the compatibility of their implementation.

Before You Read This Book
Before reading this guide, you should familiarize yourself with the Jakarta EE programming model,
specifically the Jakarta Restful Webservices 3.1 and the Jakarta Contexts and Dependency Injection
4.0 specifications. A good resource for the Jakarta EE programming model is the Jakarta EE web
site.

The Core Profile TCK is based on the following Jakarta technologies:

• Jakarta EE Core Profile Core Profile 10.0

• Jakarta Annotations Annotations 2.1

• Jakarta Contexts and Dependency Injection Lite CDI 4.0.

• Jakarta Dependency Injection DI 2.0

• Jakarta Interceptors Interceptors 2.1

• Jakarta JSON Binding JSON-B 3.0

• Jakarta JSON Processing JSON-B 2.1

• Jakarta RESTful Web Services Rest 3.1

Before running the tests in the Core Profile TCK, optionally read and become familiar with the
Arquillian testing platform. A good starting point could be a series of Arquillian Guides.

How This Book Is Organized
If you are running the Core Profile TCK for the first time, read Introduction (Core Profile TCK)
completely for the necessary background information about the TCK. Once you have reviewed that
material, perform the steps outlined in the remaining chapters.

• Introduction (Core Profile TCK) gives an overview of the principles that apply generally to all
Technology Compatibility Kits (TCKs), outlines the appeals process and describes the Core
Profile TCK architecture and components. It also includes a broad overview of how the TCK is
executed and lists the platforms on which the TCK has been tested and verified.

• Appeals Process explains the process to be followed by an implementor, who wish to challenge
any test in the TCK.

• Installation explains where to obtain the required software for the Core Profile TCK and how to

2

http://www.apache.org/licenses/LICENSE-2.0
http://jakarta.ee
https://jakarta.ee/specifications/coreprofile/10/
https://jakarta.ee/specifications/annotations/2.1/
https://jakarta.ee/specifications/cdi
https://jakarta.ee/specifications/dependency-injection/2.0/
https://jakarta.ee/specifications/interceptors/2.1/
https://jakarta.ee/specifications/jsonb/3.0/
https://jakarta.ee/specifications/jsonp/2.1/
https://jakarta.ee/specifications/restful-ws/3.1/
http://arquillian.org/guides/

install it. It covers both the primary TCK components as well as tools useful for troubleshooting
tests.

• Core Profile TCK Configuration details the configuration of the JBoss Test Harness, how to create
a TCK runner for the TCK test suite and the mechanics of how an in-container test is conducted.

• Reporting explains the test reports that are generated by the TCK test suite and introduces the
TCK audit report as a tool for measuring the completeness of the TCK in testing the CDI
specification and in understanding how testcases relate to the specification.

• Executing (Core Profile TCK) documents how the TCK test suite is executed. It covers both modes
supported by the TCK, standalone and in-container, and shows how to dump the generated test
artifacts to disk.

1. Introduction (Core Profile TCK)
This chapter explains the purpose of a TCK and identifies the foundation elements of the Jakarta
Core Profile TCK.

1.1. TCK Primer
A TCK, or Technology Compatibility Kit, is one of the three required pieces for any specification (the
other two being the specification document and a compatible implementation). The TCK is a set of
tools and tests to verify that an implementation of the technology conforms to the specification. The
tests are the primary component, but the tools serve an equally critical role of providing a
framework and/or set of SPIs for executing the tests.

The tests in the TCK are derived from assertions in the written specification document. The
assertions are itemized in an XML document, where they each get assigned a unique identifier, and
materialize as a suite of automated tests that collectively validate whether an implementation
complies with the aforementioned assertions, and in turn the specification. For a particular
implementation to be certified, all the required tests must pass (i.e., the provided test suite must be
run unmodified).

A TCK is entirely implementation agnostic. Ideally, it should validate assertions by consulting the
specification’s public API. However, when the information returned by the public API is not low-
level enough to validate the assertion, the implementation must be consulted directly. In this case,
the TCK provides an independent API as part of a porting package that enables this transparency.
The porting package must be implemented for each Core Profile implementation.

1.2. Compatibility Testing
The goal of any specification is to eliminate portability problems so long as the program which uses
the implementation also conforms to the rules laid out in the specification.

Executing the TCK is a form of compatibility testing. It’s important to understand that compatibility
testing is distinctly different from product testing. The TCK is not concerned with robustness,
performance or ease of use, and therefore cannot vouch for how well an implementation meets
these criteria. What a TCK can do is to ensure the exactness of an implementation as it relates to the

3

specification.

Compatibility testing of any feature relies on both a complete specification and a complete
compatible implementation. The compatible implementation demonstrates how each test can be
passed and provides additional context to the implementor during development for the
corresponding assertion.

1.2.1. Why Compatibility Is Important

Java platform compatibility is important to different groups involved with Java technologies for
different reasons:

• Compatibility testing is the means by which the Jakarta ensures that the Java platform does not
become fragmented as it’s ported to different operating systems and hardware.

• Compatibility testing benefits developers working in the Java programming language, enabling
them to write applications once and deploy them across heterogeneous computing
environments without porting.

• Compatibility testing enables application users to obtain applications from disparate sources
and deploy them with confidence.

• Conformance testing benefits Java platform implementors by ensuring the same extent of
reliability for all Java platform ports.

The CDI specification goes to great lengths to ensure that programs written for Jakarta EE are
compatible and the TCK is rigorous about enforcing the rules the specification lays down.

1.3. Compatibility Requirements
The compatibility requirements for Jakarta Contexts and Dependency Injection Version 3.0 consist
of meeting the requirements set forth by the rules and associated definitions contained in this
section.

1.3.1. Definitions

These definitions are for use only with these compatibility requirements and are not intended for
any other purpose.

Table 1. Definitions

Term Definition

API Definition Product A Product for which the only Java class files
contained in the product are those
corresponding to the application programming
interfaces defined by the Specifications, and
which is intended only as a means for formally
specifying the application programming
interfaces defined by the Specifications.

4

Term Definition

Computational Resource A piece of hardware or software that may vary
in quantity, existence, or version, which may be
required to exist in a minimum quantity and/or
at a specific or minimum revision level so as to
satisfy the requirements of the Test Suite.
Examples of computational resources that may
vary in quantity are RAM and file descriptors.
Examples of computational resources that may
vary in existence (that is, may or may not exist)
are graphics cards and device drivers. Examples
of computational resources that may vary in
version are operating systems and device
drivers.

Conformance Tests All tests in the Test Suite for an indicated
Technology Under Test, as distributed by the
Platform Group, excluding those tests on the
Exclude List for the Technology Under Test.

Documented Made technically accessible and made known to
users, typically by means such as marketing
materials, product documentation, usage
messages, or developer support programs.

Edition A Version of the Java Platform. Editions include
Java Platform Standard Edition and Jakarta
Platform Enterprise Edition.

Exclude List The most current list of tests, distributed by the
Platform Group or TCK Lead, that are not
required to be passed to certify conformance.
The Platform Group or TCK Lead may add to the
Exclude List for that Test Suite as needed at any
time, in which case the updated Exclude List
supplants any previous Exclude Lists for that
Test Suite.

Libraries The class libraries for the Technology Under
Test. The Libraries for Jakarta Contexts and
Dependency Injection Version 4.0 are listed in
libraries.

5

Term Definition

Location Resource A location of classes or native libraries that are
components of the test tools or tests, such that
these classes or libraries may be required to
exist in a certain location in order to satisfy the
requirements of the test suite. For example,
classes may be required to exist in directories
named in a CLASSPATH variable, or native
libraries may be required to exist in directories
named in a PATH variable.

Product A licensee product in which the Technology
Under Test is implemented or incorporated, and
that is subject to compatibility testing.

Product Configuration A specific setting or instantiation of an
Operating Mode. For example, a Product
supporting an Operating Mode that permits user
selection of an external encryption package may
have a Product Configuration that links the
Product to that encryption package.

Compatible Implementation (CI) The prototype or "proof of concept"
implementation of a Specification.

Resource A Computational Resource, a Location Resource,
or a Security Resource.

Rules These definitions and rules in this Compatibility
Requirements section of this User’s Guide.

Security Resource A security privilege or policy necessary for the
proper execution of the Test Suite. For example,
the user executing the Test Suite will need the
privilege to access the files and network
resources necessary for use of the Product.

Specifications The documents produced through the Jakarta EE
Specification Process that define a particular
Version of a Technology. The Specifications for
the Technology Under Test are referenced later
in this chapter.

TCK Lead Person responsible for maintaining TCK for the
Technology. TCK Lead is representative of Red
Hat Inc.

Technology Specifications and a compatible implementation
produced through the Jakarta EE Specification
Process.

6

Term Definition

Technology Under Test Specifications and the compatible
implementation for Jakarta Contexts and
Dependency Injection Version 3.0.

Test Suite The requirements, tests, and testing tools
distributed by the Platform Group or TCK Lead
as applicable to a given Version of the
Technology.

Version A release of the Technology, as produced
through the Jakarta EE Specification Process.

1.3.2. Rules for Jakarta Core Profile Version 10.0 Products

The following rules apply for each version of an operating system, software component, and
hardware platform Documented as supporting the Product:

CORE_PROFILE-1 The Product must be able to satisfy all applicable compatibility requirements,
including passing all Conformance Tests Rules.

CORE_PROFILE-2 Some Conformance Tests may have properties that may be changed. Properties
that can be changed are identified in the configuration interview. Properties that can be changed
are specified in TCK Properties. Apart from changing such properties and other allowed
modifications described in this User’s Guide (if any), no source or binary code for a Conformance
Test may be altered in any way.

CORE_PROFILE-3 The testing tools supplied as part of the Test Suite or as updated by the must be
used to certify compliance.

CORE_PROFILE-4 The Exclude List associated with the Test Suite cannot be modified.

CORE_PROFILE-6 All hardware and software component additions, deletions, and modifications to
a Documented supporting hardware/software platform, that are not part of the Product but
required for the Product to satisfy the compatibility requirements, must be Documented and
available to users of the Product. For example, if a patch to a particular version of a supporting
operating system is required for the Product to pass the Conformance Tests, that patch must be
Documented and available to users of the Product.

CORE_PROFILE-7 The Product must contain the full set of public and protected classes and
interfaces for all the Libraries. Those classes and interfaces must contain exactly the set of public
and protected methods, constructors, and fields defined by the Specifications for those Libraries.
No subsetting, supersetting, or modifications of the public and protected API of the Libraries are
allowed except only as specifically exempted by these Rules.

CORE_PROFILE-8 Except for tests specifically required by this TCK to be recompiled (if any), the
binary Conformance Tests supplied as part of the Test Suite must be used to certify compliance.

CORE_PROFILE-9 The functional programmatic behavior of any binary class or interface must be
that defined by the Specifications.

7

CORE_PROFILE-10 In addition to the instructions and requirements the Core Profile TCK, each
Product must pass the following standalone TCKs for the following technologies:

• Jakarta Contexts and Dependency Injection, Lite CDI 4.0.

◦ This TCK includes compatibility and signature tests for Jakarta Jakarta Interceptors.

◦ The Jakarta Contexts and Dependency Injection Language Model TCK included in the CDI
distribution.

• Jakarta Dependency Injection DI 2.0

• Jakarta JSON Binding JSON-B 3.0

• Jakarta JSON Processing JSON-B 2.1

• Jakarta RESTful Web Services Rest 3.1

• Signature tests for Jakarta Common Annotations Annotations 2.1.1

1.4. About the Jakarta Core Profile TCK
The Jakarta Core Profile TCK is designed as a portable, configurable and automated test suite for
verifying the compatibility of an implementation of the Jakarta CDI specification. The test suite is
built atop Junit5 framework and Arquillian platform.

Each test class in the suite acts as a deployable unit. The deployable units, or artifacts are packaged
as a WAR.

NOTE
The test archives are built with ShrinkWrap, a Java API for creating archives.
ShrinkWrap is a part of the Arquillian platform ecosystem.

1.4.1. Jakarta Core Profile TCK Specifications and Requirements

This section lists the applicable requirements and specifications for the Jakarta Core Profile TCK.

• Specification requirements - Software requirements for a Jakarta Core Profile implementation
include a Java SE 11 or newer compatible runtime.

• Jakarta Contexts and Dependency Injection API - The Java API defined in the CDI
specification and provided by the compatible implementation.

• Testing platform - The Jakarta Core Profile TCK requires version 1.7.0.Alpha10 of the Arquillian
(http://arquillian.org) and an Arquillian container implementation that can deploy ShrinkWrap
WebArchives of the test contents. The TCK test suite is based on Junit 5.8.2 (http://junit.org).

• Porting Package - An implementation of SPIs that are required for the test suite to run the in-
container tests and at times extend the Jakarta Core Profile 4.0 API to provide extra information
to the TCK.

• Compatible implementation - A compatible implementation runtime for compatibility testing
of the Jakarta Platform Enterprise Edition Core Profile 10.

• Jarkarta Container and Dependency Injection (CDI) - CDI builds on Jakarta Annotations and
Jakarta Interceptors, and the standalone CDI TCK provides signature and unit testing for those

8

https://jakarta.ee/specifications/cdi
https://jakarta.ee/specifications/dependency-injection/2.0/
https://jakarta.ee/specifications/jsonb/3.0/
https://jakarta.ee/specifications/jsonp/2.1/
https://jakarta.ee/specifications/restful-ws/3.1/
https://jakarta.ee/specifications/annotations/2.1/
http://arquillian.org
http://junit.org

component specifications. Passing the CDI TCK is sufficient for validation of compatibility of
Jakarta Annotations and Jakarta Interceptors.

• Jarkarta Dependency Injection (DI) - CDI builds on DI, and as such CDI implementations must
additionally pass the Jakarta Dependency Injection TCK.

1.4.2. Core Profile TCK Components

The Core Profile TCK includes the following components:

• Arquillian 1.7.0.Alpha10

• Junit 5.8.2

• TestNG 7.4.x

• Porting Package SPIs - Extensions to the CDI SPIs to allow testing of a container.

• The test suite, which is a collection of Junit 5 tests, the TestNG test suite descriptor and
supplemental resources that configure CDI and other software components.

• TCK documentation accompanied by release notes identifying updates between versions.

The Core Profile TCK has been tested on following platforms:

• WildFly 27 Preview using Eclipse Temurin Java SE 11 and Eclipse Temurin Java SE 17 on Linux
based operating systems.

2. Appeals Process
While the Jakarta Core Profile TCK is rigorous about enforcing an implementation’s conformance to
the Jakarta Core Profile specification, it’s reasonable to assume that an implementor may discover
new and/or better ways to validate the assertions. The appeals process is defined by the Jakarta EE
Jakarta EE TCK Process 1.2

2.1. What challenges to the TCK may be submitted?
Any test case (e.g., test class, @Test method), test case configuration (e.g., beans.xml), test beans,
annotations and other resources may be challenged by an appeal.

What is generally not challengeable are the assertions made by the specification. The specification
document is controlled by a separate process and challenges to it should be handled by sending an
e-mail to Platform Dev List

2.2. How these challenges are submitted?
To submit a challenge, a new issue should be created in the Jakarta Platform Project using the label
challenge. Any communication regarding the issue should be pursed in the comments of the filed
issue for accurate record.

9

https://jakarta.ee/committees/specification/tckprocess/
mailto:jakartaee-platform-dev@eclipse.org
https://github.com/eclipse-ee4j/jakartaee-platform/issues

2.3. How and by whom challenges are addressed?
The challenges will be addressed in a timely fashion by the platform dev team.

2.4. How accepted challenges to the TCK are managed?
The worflow for TCK challenges is outlined in Jakarta EE TCK Process 1.2.

Periodically, an updated TCK will be released, containing tests altered due to challenges - no new
tests will be added. Implementations are required to pass the updated TCK. This release stream is
named 10.0.x, where x will be incremented.

3. Installation
This chapter explains how to obtain the TCK and supporting software and provides
recommendations for how to install/extract it on your system.

3.1. Obtaining the Software
You can obtain a release of the Jakarta Core Profile TCK project from the Jakarta EE download site.
The release stream for Jakarta Profile TCK is named 10.0.x. The Jakarta Core Profile TCK is
distributed as a ZIP file, which contains the TCK artifacts (the test suite binary and source, test suite
configuration file) in the artifacts directory, and documentation in doc directory.

You can also download the current source code from GitHub repository.

Executing the TCK requires a Jakarta EE 10 or newer runtime environment (i.e., application server),
to which the test artifacts are deployed and the individual tests are invoked. The TCK does not
depend on any particular Jakarta EE implementation.

Naturally, to execute Java programs, you must have a Java SE runtime environment. The TCK
requires Java SE 11 or newer, which you can obtain from the Java Software website.

3.2. The TCK Environment
The TCK requires the following software to be installed:

• Java SE 11 or newer

• Maven 3.6 or newer

• A Jakarta EE 10 implementation (e.g., WildFly 27.x)

You should refer to EE 10 implementation instructions for how to install the runtime environment.

Unzipping the Jakarta Core Profile TCK archive will create a core-profile-tck-x.y.z root folder
which contains the TCK contents. To complete the installation, cd into the artifacts directory and
install the standalone TCKs and Core Profile TCK artifacts using the maven pom.xml file. From that
directory run:

10

https://jakarta.ee/committees/specification/tckprocess/
https://download.eclipse.org/jakartaee/platform/
https://github.com/eclipse-ee4j/jakartaee-tck/core-profile-tck
http://www.oracle.com/technetwork/java/index.html

mvn install

to populate the local maven repository with the necessary dependencies.

4. Core Profile TCK Configuration
This chapter lays out how to configure the TCK Harness by specifying the SPI implementation
classes, defining the target container connection information, and various other switches. You then
learn how to setup a TCK runner project that executes the TCK test suite, putting these settings into
practice.

4.1. TCK Properties
The various TCKs will have properties or configuration variables that need to be set in order to
enable running the TCK agains a compatible implementation. The examples directory in the TCK
distribution illustrates sample properties setup using Maven.

NOTE
The JSON-B standalone TCK configuration example includes running the the tests
with the system property java.locale.providers set to COMPAT. This addresses a
known inconsistency in a test when run under both Java SE 11 and Java SE 17.

NOTE

The RESTful TCK configuration expects the following system properties related to
security to be set, even though the security tests are disabled. The value of these is
meaningless:

• user .

• password

• authuser

• authpassword

In the WildFly runner example these are set to unused. These properties are
validated by the initialization of the security related test classes before the tests are
run. In addition, the Jakarta Core Profile TCK overrides the default RESTful TCK
implicit test suite to remove tests that use XML binding but are not tagged with
xml_binding and security tests that require some Jakarta Security related
configuration on the server side.

4.2. Standalone TCK Configuration
Refer to the configuration section of the CDI, RESTful, JSON-P and JSON-B standalone TCK user
guides for configuration specific to each TCK. The examples directory in the TCK distribution
illustrates sample configuration setup using Maven.

4.2.1. Jakarta RESTful TCK Configuration

The Jakarta Core Profile TCK provides a JUnit 5 suite runner that excludes the tests tagged with

11

xml_binding, servlet and security as these specifications are not part of the Core Profile. The
examples/wf-core-tck-runner/rest-tck project contains a pom.xml that configure surefire to run the
ee.jakarta.tck.coreprofile.rs.CoreProfileRestTCKSuite class which configures the Core Profile
RESTful TCK test suite.

NOTE
Implementations that support any of these technologies in their Core Profile
implementation are free to remove these exclusions to enable these tests.

5. Reporting
This chapter covers the execution results.

5.1. Maven, Failsafe, Surefire and TestNG
When the Jakarta Core Profile TCK test suite is executed during the Maven test phase of the TCK
runner project, TestNG is invoked indirectly through the Maven Surefire plugin. Surefire is a test
execution abstraction layer capable of executing a mix of tests written for JUnit, TestNG, and other
supported test frameworks.

Why is this relevant? It means two things. First, it means that you are going to get a summary of the
test run on the commandline.

If the Maven reporting plugin that complements Surefire is configured properly, Maven will also
generate a generic HTML test result report. That report is written to the file test-report.html in the
target/surefire-reports directory of the TCK runner project. It shows how many tests were run, how
many failed and the success rate of the test run.

The one drawback of the Maven Surefire report plugin is that it buffers the test failures and puts
them in the HTML report rather than outputting them to the commandline. If you are running the
test suite to determine if there are any failures, it may be more useful to get this information in the
foreground. You can prevent the failures from being redirected to the report using the following
commandline switch:

mvn test -Dsurefire.useFile=false

The unit test reports will be placed into target/failsafe or target/surefire depending on which TCK is
being run.

6. Running the Signature Tests
One of the requirements of an implementation passing the TCK is for it to pass the signature tests.
This section describes how the signature file is generated and how to run it against your
implementation.

The Core Profile specification has no API artifact other than the utility api jar that is a combination
of the various component specifications that make up the Core Profile. As such, there is no Core

12

Profile signature test.

6.1. Running the Component Specification Signature
Tests
Each required component TCK describes how to run its signature tests. The JSON-P, JSON-B and
Restful standalone TCKs include a test that sets up and runs the signature tests as part of the Junit 5
tests. Running those standalone TCKs generates the signature test results.

The CDI TCK includes a pom file to execute the signature tests. See the CDI TCK user guide for how
to run those tests.

7. Executing (Core Profile TCK)
The Jakarta Core Profile is designed to be executed in a framework like Maven where the Core
Profile TCK along with each standalone TCK described as required in the Introduction (Core Profile
TCK) are configured in a profile that defined the dependencies and configuration to run the
associated TCK.

8. WildFly Example
In the examples directory of the TCK distribution, there is a wf-core-tck-runner maven project that
illustrates running the standalone TCKs along with the Jakarta Core Profile TCK. The wf-core-tck-
runner/README-WFP.adoc describes how to run these TCKs against WildFly.

The associated pom.xml Maven files in each TCK runner directory illustrate the configuration needed
to run the tests using Maven and Arquillian.

13

	Technology Compatibility Kit Reference Guide for Jakarta Core Profile
	Table of Contents
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized

	1. Introduction (Core Profile TCK)
	1.1. TCK Primer
	1.2. Compatibility Testing
	1.3. Compatibility Requirements
	1.4. About the Jakarta Core Profile TCK

	2. Appeals Process
	2.1. What challenges to the TCK may be submitted?
	2.2. How these challenges are submitted?
	2.3. How and by whom challenges are addressed?
	2.4. How accepted challenges to the TCK are managed?

	3. Installation
	3.1. Obtaining the Software
	3.2. The TCK Environment

	4. Core Profile TCK Configuration
	4.1. TCK Properties
	4.2. Standalone TCK Configuration

	5. Reporting
	5.1. Maven, Failsafe, Surefire and TestNG

	6. Running the Signature Tests
	6.1. Running the Component Specification Signature Tests

	7. Executing (Core Profile TCK)
	8. WildFly Example

