Jakarta Concurrency TCK Reference

Guide

Table of Contents

1. Preface
1.1. Licensing
1.2. Who Should Use This Guide
1.3. Terminology - "SE mode" vs. "EE mode"
1.4. Terminology - "Standalone TCK"
1.5. Terminology - "Test Client" vs "Test Server"
1.6. Before You Read This Guide
2. Major TCK Changes
3. What Tests Must I Pass To Certify Compatibility?
3.1. Runtime Tests and Signature Tests Required
3.2. Java SE level - Java 11 or Java 17
4. Prerequisites
4.1. Software To Install
4.2. Testing Framework
5. A Guide to the TCK Distribution
5.1. Obtaining the Software
5.2. The TCK Environment
5.3. A Quick Tour of the TCK Artifacts
6. TCK Test Requirements
6.1. Runtime tests
7. Example runner
8. Set up a TCK runner project
8.1. Test Client Dependencies
8.2. Test Server Dependencies
8.3. Configure TestNG
8.4. Configure Arquillian
8.5. Configure Application Server
8.6. Configure Logging
8.7. Advanced Configuration
9. Running the TCK
9.1. Expected Output
10. Signature Tests
10.1. Running signature tests
10.2. Expected output

© 00 9 9 9O 9 9 g gy gk kR R W W www DN DN

N O Y
13 T O O NI N N = I =

11. TCK Challenges/Appeals Process 17

11.1. Filing a Challenge 18
12. Certification of Compatibility 18
12.1. Filing a Certification Request 18
13. Rules for Jakarta Concurrency Products 18
14. Links 20

1. Preface

This guide describes how to download, install, configure, and run the Technology Compatibility Kit
(TCK) used to verify the compatibility of an implementation of the Jakarta Concurrency
specification.

The specification describes the job specification language, Java programming model, and runtime
environment for Jakarta Concurrency applications.

1.1. Licensing

The Jakarta Concurrency TCK is provided under the Eclipse Foundation Technology
Compatibility Kit License - v 1.0 [https://www.eclipse.org/legal/tck.php].

1.2. Who Should Use This Guide

This guide will assist in running the test suite, which verifies implementation compatibility for:

» implementers of Jakarta Concurrency.

1.3. Terminology - "SE mode" vs. "EE mode"

Building on the previous point, it is convenient to use, as shorthand, the term "EE mode" when
talking about the TCK constructs and requirements specifically for users running the TCK to certify
against the entire EE platform. It is a convenient shorthand term too, then, to use the term "SE
mode" for users that are only trying to certify against the Jakarta Concurrency specification, though
this term in some ways might be misleading.

Some specifications have a subset of tests that can run in "SE mode" without the requirement of
running against an entire EE Platform. The Concurrency TCK, however, runs all tests in "EE mode"
and will require a Jakarta EE platform to test against.

1.4. Terminology - "Standalone TCK"

The community will sometimes refer to this TCK as the "standalone" Concurrency TCK. This usage
comes from the fact that Jakarta Concurrency is part of the Jakarta EE Platform, which has a
platform-level TCK, which we’re distinguishing this "standalone" TCK from.

This terminology is confusing, since readers might interpret "standalone" to mean that this TCK can

https://www.eclipse.org/legal/tck.php

be run in SE Mode, when in-fact, it must be run in EE Mode. A better term would be Specification
TCK, but that terminology is not yet being used.

1.5. Terminology - "Test Client" vs "Test Server"

The Concurrency TCK acts as a Test Client that will install test applications onto a Jakarta EE
Platform Server. The Platform Server will act as a Test Server and run tests based on incoming
requests from the Test Client. Assertions will occur both on the client and server sides.

1.6. Before You Read This Guide

Before reading this guide, you should familiarize yourself with the Jakarta Concurrency Version
3.0.0 specification, which can be found at https://jakarta.ee/specifications/concurrency/3.0/.

Other useful information and links can be found on the eclipse.org project home page for the
Jakarta Concurrency project [https:/projects.eclipse.org/projects/ee4j.cu] and also at the GitHub
repository home for the specification project [https://github.com/jakartaee/concurrency].

2. Major TCK Changes

This version of the Jakarta Concurrency TCK introduces two major changes to the TCK:

1. We change the official execution of the standalone TCK from Ant to Maven. Though the TCK has
long been built with Maven and we even have included execution or "runner" Maven modules,
our official documentation described an Ant-based execution. This updated version of the TCK
Reference Guide details the requirements and procedures for performing an official Maven-
based execution of this TCK.

2. We changed from using a proprietary "Test Harness" framework to deploy and test applications
on Jakarta EE Platforms, to using the open source Arquillian test framework.

3. What Tests Must I Pass To Certify
Compatibility?

3.1. Runtime Tests and Signature Tests Required

To certify compatibility with the entire Jakarta EE Platform (including Jakarta Concurrency), you
will need to run the TCK against your implementation and pass 100% of both the:

* TestNG runtime tests

 Signature tests
The two types of tests are encapsulated in a single execution or configuration. This means that the

Signature Tests will run alongside all other tests and no additional execution or configuration is
required.

https://jakarta.ee/specifications/concurrency/3.0/
https://projects.eclipse.org/projects/ee4j.cu
https://github.com/jakartaee/concurrency

By "runtime" tests we simply mean tests simulating Jakarta Concurrency applications running
against the Concurrency implementation attempting to certify compatibility. These tests verify that
the Concurrency applications behave according to the details defined in the specification, as
validated by the TCK test logic.

3.2.Java SE level - Java 11 or Java 17

The JDK used during test execution must be noted and listed as an important component of the
certification request. In particular, the Java SE version is important to note, and this version must
be used consistently throughout both the TestNG runtime and Signature tests for a given
certification request.

For the current TCK version, this can be done with either Java SE Version 11 or Version 17.

4. Prerequisites

4.1. Software To Install

1. Java/JDK - Install the JDK you intend to use for this certification request (Java SE Version 11 or
Version 17).

2. Maven - Install Apache Maven 3.6.0 or higher.

3. Jakarta EE Platform - Jakarta EE Application Server or Container [Glassfish, Open Liberty,
JBoss, WebLogic, etc.]

4.2. Testing Framework

To better understand how this TCK works, knowing what testing frameworks are being utilized is
helpful. Knowledge of how these frameworks operate and interact will help during the project
setup.

1. Arquillian - Since the EE Platform TCK uses Arquillian to execute tests within an Arquillian
"container"” for certifying against the EE Platform, you must configure an Arquillian adapter for
your target runtime. Version 1.6.0 or later

2. TestNG - Since the EE Platform TCK uses TestNG as the entrypoint for tests, and deployments
using Arquillian, you must configure a TestNG configuration file to ensure all tests are found
and executed.

3. Signature Test Tool - No action is needed here, but we note that the signature files were built
and should be validated with the Maven plugin with group:artifact:version coordinates:
org.netbeans.tools:sigtest-maven-plugin:1.6, as used by the sample sigtest runner included in
the TCK zip. This is a more specific direction than in earlier releases, in which it was left more
open for the user to use a compatible tool. Since there are small differences in the various
signature test tools, we standardize on this version.

https://arquillian.org/guides/developing_a_container_adapter/

5. A Guide to the TCK Distribution

This section explains how to obtain the TCK and extract it on your system.

5.1. Obtaining the Software

The Jakarta Concurrency TCK is distributed as a zip file, which contains the TCK artifacts (the test
suite binary and source, porting package SPI binary and source, the test suite XML definitions, and
signature files) in /artifacts, the documentation in /doc, and a starter project in /starter. You can
access the current source code from the Git repository: https://github.com/jakartaee/concurrency.

5.2. The TCK Environment

The software can simply be extracted from the ZIP file. Once the TCK is extracted, you’ll see the
following structure:

concurrency-tck-<version>-dist/
artifacts/
doc/
starter/
LICENSE
README . md

In more detail:

» artifacts contains all the test artifacts pertaining to the TCK: The TCK test classes and source,
the TestNG configuration file, a copy of the SignatureTest file for reference, and a script to copy
the TCK into local maven repository.

* doc contains the documentation for the TCK: this reference guide.

» starter a very basic starter maven project to get you started.

5.3. A Quick Tour of the TCK Artifacts

5.3.1. What is included
The Concurrency TCK is a test library that includes four types of packages:
* ee.jakarta.tck.concurrent.api.* these are basic API tests that ensure methods throw the correct

exceptions and return the valid values.

* ee.jakarta.tck.concurrent.spec.* these are more complex SPEC tests that ensure that
implementations behave as expected based on the specification.

* ee.jakarta.tck.concurrent.common.* these are common packages shared between test packages.

» ee.jakarta.tck.concurrent.framework this package is an abstraction layer to make writing tests
using TestNG, Arquillian, SigTest, and java.util.logging easier.

https://github.com/jakartaee/concurrency

TestNG "suite" definition XML files

Here we use the term "suite" informally to describe groups of tests required to pass the TCK (and
NOT specifically to refer to any particular "suite" construct defined by the TestNG API).

There are two "suites" included in the TCK. There is a "suite" for the Concurrency API portion of the
"Jakarta EE Platform" TCK and there is a second suite for the Concurrency SPI portion of the
"Jakarta EE Platform".

These "suites" are both represented within the single artifacts/suite.xml file and are identified by
their package names:

1. ee.jakarta.tck.concurrent.api.*

2. ee.jakarta.tck.concurrent.spec.*

Note: An implementation MUST run against all tests provided in the suite XML file unmodified for
an implementation to pass the TCK.

API Signature Files

The one signature file exists for both Java 11 and 17:
1. artifacts/jakarta.enterprise.concurrent.sig

Note: This signature file is for reference only. A copy of the signature file is included in the
Concurrency TCK test jar.

5.3.2. What is not included

The Concurrency TCK uses but does not provide the necessary application servers, test frameworks,
APIs, SPIs, or implementations required to run. It is up to the tester to include those dependencies
and set up a test project to run the TCK.

Here is an essential checklist of what you will need, and links to the section that describe how to
satisfy these requirements:
* An Application Server to test against | Software To Install

* The Concurrency API, Concurrency TCK, Arquillian, and TestNG libraries available to the Test
Client | Test Client Dependencies

* The Arquillian, TestNG, Derby JDBC, and Signature Test libraries available to the Test Server |
Test Server Dependencies

* A TestNG configuration file available to the Test Client | Configure TestNG
* An Arquillian SPI implementation for your Application Server | Configure Arquillian
* An Application Server configuration with specific security roles | Configure Application Server

* Alogging configuration for TCK logging on Test Client and Test Server | Configure Logging

6. TCK Test Requirements

Because there is flexibility regarding how a user could use Maven to configure a TCK execution, we
make a separate, clear note here of the required number of tests needed to be passed in order to
claim compliance via this TCK.

6.1. Runtime tests

For the runtime test (JUnit) component of the TCK:
* 164 tests must be passed to successfully execute the EE TCK suite

*Note: This count includes the signature test

7. Example runner

This section is dedicated to listing example runners for other implementations to use as a reference
on how to configure and use the Concurrency TCK.

Below are links to projects where the Concurrency TCK is being used and run successfully:

* Open Liberty: https://github.com/OpenLiberty/open-liberty/tree/release/dev/
io.openliberty.jakarta.concurrency.3.0_fat_tck

8. Set up a TCK runner project

A simple maven project is required to control the lifecycle of the Concurrency TCK.

8.1. Test Client Dependencies

The entry point to running the TCK will be on the client-side using TestNG. The Test Client will need
to be configured with the dependencies necessary to run the TCK. Some of these dependencies will
depend on the application server you are using, and comments have been added to this sample
describing the customizations necessary.

Example starter/pom.xml:

<!-- The Arquillian test framework -->
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.jboss.arquillian</groupId>
<artifactId>arquillian-bom</artifactId>
<version>${arquillian.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>

https://github.com/OpenLiberty/open-liberty/tree/release/dev/io.openliberty.jakarta.concurrency.3.0_fat_tck
https://github.com/OpenLiberty/open-liberty/tree/release/dev/io.openliberty.jakarta.concurrency.3.0_fat_tck

</dependencies>
</dependencyManagement>

<!-- Client Dependencies -->
<dependencies>
<!-- The TCK -->
<dependency>
<groupld>jakarta.enterprise.concurrent</groupIld>
<artifactId>jakarta.enterprise.concurrent-tck</artifactId>
<version>${jakarta.concurrent.version}</version>
</dependency>
<!-- The API -->
<dependency>
<groupld>jakarta.enterprise.concurrent</groupld>
<artifactId>jakarta.enterprise.concurrent-api</artifactId>
<version>${jakarta.concurrent.version}</version>
</dependency>
<!-- Arquillian Implementation for TestNG -->
<dependency>
<groupId>org.jboss.arquillian.testng</groupId>
<artifactId>arquillian-testng-container</artifactId>
<version>${arquillian.version}</version>
</dependency>
<!-- TODO add Arquillian SPI impl for your Jakarta EE Platform -->
<!-- Arquillian transitive dependency on Servlet -->
<dependency>
<groupId>jakarta.servlet</groupId>
<artifactId>jakarta.servlet-api</artifactId>
<version>${jakarta.servlet.version}</version>
</dependency>
<I-- TestNG -->
<dependency>
<groupld>org.testng</groupIld>
<artifactId>testng</artifactId>
<version>${testng.version}</version>
</dependency>
<!-- Signature Test Plugin -->
<dependency>
<groupId>org.netbeans.tools</groupIld>
<artifactId>sigtest-maven-plugin</artifactId>
<version>${sigtest.version}</version>
</dependency>
</dependencies>

Each of these Arquillian tests run within the runtime’s Servlet container, with the help of an
Arquillian adapter for that runtime implementation (mentioned as a prerequisite).

8.2. Test Server Dependencies

If the Test Server is running on a separate JVM (recommended), then the Test Server will also need

access to the TestNG, Signature Test, and the Derby JDBC libraries. The Test Server dependencies
can be copied over during the build phase.

Example starter/pom.xml:

<!-- Test Server Dependencies -->
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<version>${maven.dep.plugin.version}</version>
<configuration>
<artifactItems>
<artifactItem>
<groupld>org.testng</groupld>
<artifactId>testng</artifactId>
<version>${testng.version}</version>
</artifactItem>
<artifactItem>
<groupId>org.apache.derby</groupId>
<artifactId>derby</artifactId>
<version>${derby.version}</version>
</artifactItem>
<artifactItem>
<groupld>org.netbeans.tools</groupIld>
<artifactId>sigtest-maven-plugin</artifactId>
<version>${sigtest.version}</version>
</artifactItem>
</artifactItems>
<outputDirectory>${application.server.lib}</outputDirectory>
</configuration>
</plugin>

Using the maven command:

$ mvn dependency:copy

8.3. Configure TestNG

TestNG needs to be configured to know which packages contain tests to run. This configuration is
done via a configuration file. The TestNG configuration file has been provided in the artifacts/ and
starter/ directories.

In order for your maven project to execute these tests the surefire plugin needs to be configured.

Example starter/pom.xml:

<!-- Surefire plugin - Entrypoint for TestNG -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>${maven.surefire.plugin.version}</version>
<configuration>
<suiteXmlFiles>
<suiteXmlFile>${suiteXmlFile}</suiteXmlFile>
</suiteXmlFiles>
<!-- Ensure surfire plugin looks under src/main/java instead of
src/test/java -->

<testSourceDirectory>${basedir}${file.separarator}src${file.separarator}main§{file.sep
ararator}java${file.separarator}</testSourceDirectory>
</configuration>
</plugin>

8.4. Configure Arquillian

Application Servers that implement the Arquillian SPI use a configuration file to define properties,
such as hostname, port, username, password, etc. These properties will allow Arquillian to connect
to the application server, install applications, and get test responses. An Arquillian configuration
file has been provided in the starter/ directory.

8.5. Configure Application Server

The Concurrency TCK wuses default objects (java:comp/DefaultManagedExecutorService) and
annotation-based configurations (@ManagedExecutorDefinition) to ensure that application servers
require minimal customization to run the TCK.

However, the Concurrency TCK does require that Application Servers define a security context for
security-based tests.

* Username: javajoe
* Password: javajoe

* Group: Manager
The TCK uses external libraries that also need to be available on the Application Server’s class path.

» org.apache.derby:derby - For database testing
* org.testng:testng - For test assertions

» org.netbeans.tools:sigtest-maven-plugin - For signature testing

See Test Server Dependencies

10

8.6. Configure Logging

The Concurrency TCK uses java.util.logging for logging debug messages, and to output test results
in some cases. Registered loggers exist both on the Test Client and Test Server meaning you will
need to configure both sides to enable logging. This is done by pointing the JVM to the logging
configuration file using the property. An example logging configuration file has been provided
under the /starter directory.

To enable logging for the Client side of tests, add a system property to the surefire plugin:

Example starter/pom.xml:

<systemProperties>
<property>
<name>java.util.logging.config.file</name>
<value>${logging.config}</value>
</property>
</systemProperties>

To enable logging for the Server side of tests, set the same system property on the JVM running
your application server.

8.7. Advanced Configuration

Some application servers may have custom deployment descriptors that they would like to include
as part of the applications that are being deployed to their server. The custom deployment
descriptors can be included in a programmatic way using ShrinkWrap and the Arquillian SPI.

Example ApplicationArchiveProcessor:

public class MyApplicationArchiveProcessor implements ApplicationArchiveProcessor {
List<String> appNames;

@0verride
public void process(Archive<?> archive, TestClass testClass) {
if(appNames.contains(archive.getName())){
((WebArchive) archive).addAsWebInfResource("my-custom-sun-web.xml", "sun-
web.xml");
}
}

Example LoadableExtension:

11

public class MylLoadableExtension implements LoadableExtension {
@0verride
public void register(ExtensionBuilder extensionBuilder) {
extensionBuilder.service(ApplicationArchiveProcessor.class,
MyApplicationArchiveProcessor.class);

}
}

Example META-INF/services/org.jboss.arquillian.core.spi.LoadableExtension:

my.custom.test.package.MyLoadableExtension

9. Running the TCK

Once the TCK Runner project is created and configured the Concurrency TCK is run as part of the
maven test lifecycle.

$ cd starter
$ mvn clean test

9.1. Expected Output

Here is example output when we, as in the starter runner, run successfully:

12

$ mvn clean test

Running TestSuite

. TestNG 6.14.3 by Cédric Beust (cedric@beust.com)

Tests run: 162, Failures: @, Errors: @, Skipped: @, Time elapsed: 410.985 sec - in

TestSuite

Results :

Tests run: 162, Failures: @, Errors: @, Skipped: @

16:05:47,343
16:05:47,344

16:05:47,345

[2/2]

16:05:47,346

16:05:47,351
16:05:47,351

16:05:47,359

[INFO]
[INFO]

[INFO]

[INFO]
[INFO]

[INFO]

io.openliberty.jakarta.enterprise.concurrent:tck.runner >-------

Building Jakarta Concurrency TCK Runner 1.0-SNAPSHOT

16:05:47,380

SNAPSHOT :

16:05:47,381
16:05:47,382

[06:55 min]

16:05:47,383

0.017 s]

16:05:47,384

[INFO]

[INFO]
[INFO]

[INFO]

[INFO]

Reactor Summary for Jakarta Concurrency TCK Runner 1.0-

Jakarta Concurrency TCK Runner TCK Module SUCCESS

Jakarta Concurrency TCK Runner SUCCESS [

16:05:47,385
16:05:47,385

16:05:47,386
16:05:47,387
16:05:47,387

[INFO]
[INFO]

[INFO]
[INFO]
[INFO]

Total time: 06:55 min
Finished at: 2022-03-30T16:05:47-05:00

13

10. Signature Tests

The signature tests validate the integrity of the jakarta.enterprise.concurrent Java "namespace" (or
"package prefix") of the Concurrency implementation. This would be especially important for an
implementation packaging its own API JAR in which the API must be validated in its entirety. For
implementations expecting their users to rely on the API released by the Jakarta Concurrency
specification project (e.g. to Maven Central) the signature tests are also important to validate that
improper (non-spec-defined) extensions have not been added to jakarta.enterprise.concurrent.*
packages/classes/etc.

10.1. Running signature tests

The Concurrency TCK will run signature tests on the application server itself, and not as part of a
separate plugin / execution. This means that the signature tests will run during the maven test
phase.

You need to configure your application server with a JVM property -Djimage.dir=<path-your-server
-has-access-to>. This is because, when running the signature tests on JDK 9+ we need to convert the
JDK modules back into class files for signature testing.

The signature test plugin we use will also attempt to perform reflective access of classes, methods,
and fields. Due to the new module system in JDK 9+ special permissions need to be added in order
for these tests to run:

If you are using a Security Manager add the following permissions to the sigtest-maven-plugin on
your application server:

permission java.lang.RuntimePermission "accessClassInPackage.jdk.internal";
permission java.lang.RuntimePermission "accessClassInPackage.jdk.internal.reflect";
permission java.lang.RuntimePermission
"accessClassInPackage.jdk.internal.vm.annotation";

By default the java.base module only exposes certain classes for reflective access. Therefore, the
Concurrency TCK test will need access to the jdk.internal.vm.annotation class. To give the sigtest-
maven-plugin access to this class set the following JVM properties:

--add-exports java.base/jdk.internal.vm.annotation=ALL-UNNAMED
--add-opens java.base/jdk.internal.vm.annotation=ALL-UNNAMED

Some JDKs will mistake the space in the prior JVM properties as delimiters between properties In
this case use:

--add-exports=java.base/jdk.internal.vm.annotation=ALL-UNNAMED
--add-opens=java.base/jdk.internal.vm.annotation=ALL-UNNAMED

14

For more information about generating the signature test file, and how the test run read:
[ee.jakarta.tck.concurrent.framework.signaturetest/ README.md](https://github.com/jakartaee/
concurrency/blob/master/tck/src/main/java/ee/jakarta/tck/concurrent/framework/signaturetest/
README.md)

As mentioned in the prerequisite section the signature file formats across the various signature test
tools have diverged and this test suite uses the Maven plugin with group:artifact:version
coordinates: org.netheans.tools:sigtest-maven-plugin:1.6.

10.2. Expected output

The the Signature Test plugin will log output to System.out. Whereas, the Signature Test framework
we use to set up the test will log using java.util.logging so you may see these logs output to two
separate locations depending on your application server.

[3/30/22, 16:01:03:250 CDT] 00000045 TestServlet I --> testSignatures
[3/30/22, 16:01:12:618 CDT] 00000045 SystemOut Q ******kkxxx BEGIN PACKAGE
LEVEL SIGNATURE VALIDATIQN #*#**¥*dkkssk

[3/30/22, 16:01:12:618 CDT] 00000045 SystemOut Q *****kkkkx BEGIN VALIDATE
PACKAGE 'jakarta.enterprise.concurrent' **¥¥kkkkkk

[3/30/22, 16:01:12:618 CDT] 00000045 SystemOut Q Fx*FFFF**x VALIDATE IN
STATIC MODE - TO CHECK CONSANT VALUES ****

[3/30/22, 16:01:12:619 CDT] 00000045 SystemOut 0 Static mode supports checks
of static constants values

[3/30/22, 16:01:12:622 CDT] 00000045 SystemOut 0 Setting static mode flag to
allow constant checking.

[3/30/22, 16:01:13:392 CDT] 00000045 SystemOut Q *¥*&**F*** Status Report
"jakarta.enterprise.concurrent' ***¥**kkik

[3/30/22, 16:01:13:392 CDT] 00000045 SystemOut 0 SignatureTest report

Base version: 3.0.0-SNAPSHOT

Tested version:

Check mode: src [throws normalized]
Constant checking: on

Warning: The return type java.util.concurrent.Future<{%%0}> can't be resolved
Warning: The return type java.util.concurrent.Future<{%%0}> can't be resolved
Warning: The return type java.util.concurrent.Future<?> can't be resolved

[3/30/22, 16:01:13:392 CDT] 00000045 SystemOut Q *****FF*** P3ckage
'jakarta.enterprise.concurrent' - PASSED (STATIC MQODE) ******xx*

[3/30/22, 16:01:13:393 CDT] 00000045 SystemOut Q FF*xxddxxx VALIDATE IN
REFLECTIVE MODE ****

[3/30/22, 16:01:13:393 CDT] 00000045 SystemOut 0 Reflective mode supports
verification within containers (ie ejb, servlet, etc)

[3/30/22, 16:01:13:394 CDT] 00000045 SystemOut 0 Not Setting static mode flag
to allow constant checking.

[3/30/22, 16:01:13:404 CDT] 00000045 SystemOut 0 Calling:

com.sun.tdk.signaturetest.SignatureTest() with following args:

15

https://github.com/jakartaee/concurrency/blob/master/tck/src/main/java/ee/jakarta/tck/concurrent/framework/signaturetest/README.md
https://github.com/jakartaee/concurrency/blob/master/tck/src/main/java/ee/jakarta/tck/concurrent/framework/signaturetest/README.md
https://github.com/jakartaee/concurrency/blob/master/tck/src/main/java/ee/jakarta/tck/concurrent/framework/signaturetest/README.md

16

[3/30/22, 16:01:13:892 CDT] 00000045 SystemOut Q ***&*F**** Status Report
"jakarta.enterprise.concurrent' *¥FEEkkkdk

[3/30/22, 16:01:13:892 CDT] 00000045 SystemOut 0 SignatureTest report
Base version: 3.0.0-SNAPSHOT

Tested version:

Check mode: src [throws normalized]

Constant checking: on

Warning: The return type java.util.concurrent.Future<{%%0}> can't be resolved
Warning: The return type java.util.concurrent.Future<{%%0}> can't be resolved
Warning: The return type java.util.concurrent.Future<?> can't be resolved

[3/30/22, 16:01:13:893 CDT] 00000045 SystemOut Q ********** Package
"'jakarta.enterprise.concurrent’ - PASSED (REFLECTION MODE) *******%

[3/30/22, 16:01:13:893 CDT] 00000045 SystemOut Q *****kkkkx END VALIDATE
PACKAGE 'jakarta.enterprise.concurrent' **¥¥kkkkkk

[3/30/22, 16:01:13:893 CDT] 00000045 SystemOut Q ****ddkkkk BEGIN VALIDATE
PACKAGE 'jakarta.enterprise.concurrent.spi' **¥x¥skkdk

[3/30/22, 16:01:13:893 CDT] 00000045 SystemOut Q ****kkkkkx \JA| TDATE IN
STATIC MODE - TO CHECK CONSANT VALUES ****

[3/30/22, 16:01:13:893 CDT] 00000045 SystemOut 0 Static mode supports checks
of static constants values

[3/30/22, 16:01:13:894 CDT] 00000045 SystemOut 0 Setting static mode flag to
allow constant checking.

[3/30/22, 16:01:13:909 CDT] 00000045 SystemOut 0 Calling:

com.sun.tdk.signaturetest.SignatureTest() with following args:

[3/30/22, 16:01:14:292 CDT] 00000045 SystemOut Q FxxAFHAFHE Status Report

'jakarta.enterprise.concurrent.spi’ ***FEEEEEE
[3/30/22, 16:01:14:293 CDT] 00000045 SystemOut 0 SignatureTest report

Base version: 3.0.0-SNAPSHOT

Tested version:

Check mode: src [throws normalized]
Constant checking: on

Warning: The return type java.util.concurrent.Future<{%%0}> can't be resolved
Warning: The return type java.util.concurrent.Future<{%%0}> can't be resolved
Warning: The return type java.util.concurrent.Future<?> can't be resolved

[3/30/22, 16:01:14:293 CDT] 00000045 SystemOut Q wHFAAFFFFX Package
'jakarta.enterprise.concurrent.spi’' - PASSED (STATIC MQDE) **¥¥xkkk*

[3/30/22, 16:01:14:293 CDT] 00000045 SystemOut Q Fxxkxxkkxk \ALIDATE IN
REFLECTIVE MODE ****

[3/30/22, 16:01:14:293 CDT] 00000045 SystemOut 0 Reflective mode supports
verification within containers (ie ejb, servlet, etc)

[3/30/22, 16:01:14:294 CDT] 00000045 SystemOut 0 Not Setting static mode flag
to allow constant checking.

[3/30/22, 16:01:14:301 CDT] 00000045 SystemOut 0 Calling:

com.sun.tdk.signaturetest.SignatureTest() with following args:

[3/30/22, 16:01:14:616 CDT] 00000045 SystemOut Q *¥*FAFF*** Status Report
"jakarta.enterprise.concurrent.spi' **¥xxkkkdkk

[3/30/22, 16:01:14:616 CDT] 00000045 SystemOut 0 SignatureTest report
Base version: 3.0.0-SNAPSHOT

Tested version:

Check mode: src [throws normalized]

Constant checking: on

Warning: The return type java.util.concurrent.Future<{%%0}> can't be resolved
Warning: The return type java.util.concurrent.Future<{%%0}> can't be resolved
Warning: The return type java.util.concurrent.Future<?> can't be resolved

[3/30/22, 16:01:14:617 CDT] 00000045 SystemOut Q *****xx*** Package
"jakarta.enterprise.concurrent.spi' - PASSED (REFLECTION MODE) k%
[3/30/22, 16:01:14:617 CDT] 00000045 SystemOut Q ****x*xxxx END VALIDATE

PACKAGE 'jakarta.enterprise.concurrent.spi' *****xxki*
[3/30/22, 16:01:14:618 CDT] 00000045 ConcurrencySigTest I

R e R ek R Rk R S e R R S R R e e R R R Rk SR R R R SRR R R R R

A1l package signatures passed.

Passed packages listed below:
jakarta.enterprise.concurrent(static mode)
jakarta.enterprise.concurrent(reflection mode)
jakarta.enterprise.concurrent.spi(static mode)

jakarta.enterprise.concurrent.spi(reflection mode)
kkhkkkkkhkkhkkkhkkhkhkkhkkhhkhkkhkkhkhkkhkkhkkhkkhkhkkhkkhkhkkhkkhkkkhkkikkk

[3/30/22, 16:01:14:620 CDT] 00000045 TestServlet
I <-- testSignatures

11. TCK Challenges/Appeals Process

The Jakarta EE TCK Process 1.1 will govern all process details used for challenges to the Jakarta
Concurrency TCK.

Except from the Jakarta EE TCK Process 1.1:

Specifications are the sole source of truth and considered overruling to the
TCK in all senses. In the course of implementing a specification and
attempting to pass the TCK, implementations may come to the conclusion
that one or more tests or assertions do not conform to the specification, and
therefore MUST be excluded from the certification requirements.

Requests for tests to be excluded are referred to as Challenges. This section
identifies who can make challenges to the TCK, what challenges to the TCK
may be submitted, how these challenges are submitted, how and to whom
challenges are addressed.

17

https://jakarta.ee/committees/specification/tckprocess/

11.1. Filing a Challenge

The challenge process is defined within the Challenges section within the Jakarta EE TCK Process
1.1.

Challenges will be tracked via the issues of the Jakarta Concurrency Specification repository.

As a shortcut through the challenge process mentioned in the Jakarta EE TCK Process 1.1 you can
click here, though it is recommended that you read through the challenge process to understand it
in detail.

12. Certification of Compatibility

The Jakarta EE TCK Process 1.1 will define the core process details used to certify compatibility with
the Jakarta Concurrency specification, through execution of the Jakarta Concurrency TCK.

Except from the Jakarta EE TCK Process 1.1:

Jakarta EE is a self-certification ecosystem. If you wish to have your
implementation listed on the official https://jakarta.ee implementations
page for the given specification, a certification request as defined in this
section is required.

12.1. Filing a Certification Request

The certification of compatibility process is defined within the Certification of Compatibility section
within the Jakarta EE TCK Process 1.1.

Certifications will be tracked via the issues of the Jakarta Concurrency Specification repository.

As a shortcut through the certification of compatibility process mentioned in the Jakarta EE TCK
Process 1.1 you can click here, though it is recommended that you read through the certification
process to understand it in detail.

13. Rules for Jakarta Concurrency Products

The following rules apply for each version of an operating system, software component, and
hardware platform Documented as supporting the Product:

* Concurrencyl The Product must be able to satisfy all applicable compatibility requirements,
including passing all Conformance Tests, in every Product Configuration and in every
combination of Product Configurations, except only as specifically exempted by these Rules. For
example, if a Product provides distinct Operating Modes to optimize performance, then that
Product must satisfy all applicable compatibility requirements for a Product in each Product
Configuration, and combination of Product Configurations, of those Operating Modes.

* Concurrencyl.1 If an Operating Mode controls a Resource necessary for the basic execution of

18

https://github.com/jakartaee/concurrency/issues
https://github.com/jakartaee/concurrency/issues/new?labels=challenge
https://jakarta.ee/committees/specification/tckprocess
https://jakarta.ee
https://github.com/jakartaee/concurrency/issues
https://github.com/jakartaee/concurrency/issues/new?labels=certification

the Test Suite, testing may always use a Product Configuration of that Operating Mode providing
that Resource, even if other Product Configurations do not provide that Resource.
Notwithstanding such exceptions, each Product must have at least one set of Product
Configurations of such Operating Modes that is able to pass all the Conformance Tests. For
example, a Product with an Operating Mode that controls a security policy (i.e., Security
Resource) which has one or more Product Configurations that cause Conformance Tests to fail
may be tested using a Product Configuration that allows all Conformance Tests to pass.

Concurrencyl.2 A Product Configuration of an Operating Mode that causes the Product to
report only version, usage, or diagnostic information is exempted from these compatibility
rules.

Concurrencyl.3 An API Definition Product is exempt from all functional testing requirements
defined here, except the signature tests.

Concurrency2 Some Conformance Tests may have properties that may be changed. Properties
that can be changed are identified in the configuration interview. Properties that can be
changed are identified in the JavaTest Environment (jte) files in the Test Suite installation.
Apart from changing such properties and other allowed modifications described in this User’s
Guide (if any), no source or binary code for a Conformance Test may be altered in any way
without prior written permission. Any such allowed alterations to the Conformance Tests will
be provided via the Jakarta EE Specification Project website and apply to all vendor compatible
implementations.

Concurrency3 The testing tools supplied as part of the Test Suite or as updated by the
Maintenance Lead must be used to certify compliance.

Concurrency4 The Exclude List associated with the Test Suite cannot be modified.

Concurrency5 The Maintenance Lead can define exceptions to these Rules. Such exceptions
would be made available as above, and will apply to all vendor implementations.

Concurrency6 All hardware and software component additions, deletions, and modifications to
a Documented supporting hardware/software platform, that are not part of the Product but
required for the Product to satisfy the compatibility requirements, must be Documented and
available to users of the Product. For example, if a patch to a particular version of a supporting
operating system is required for the Product to pass the Conformance Tests, that patch must be
Documented and available to users of the Product.

Concurrency7 The Product must contain the full set of public and protected classes and
interfaces for all the Libraries. Those classes and interfaces must contain exactly the set of
public and protected methods, constructors, and fields defined by the Specifications for those
Libraries. No subsetting, supersetting, or modifications of the public and protected API of the
Libraries are allowed except only as specifically exempted by these Rules.

Concurrency7.1 If a Product includes Technologies in addition to the Technology Under Test,
then it must contain the full set of combined public and protected classes and interfaces. The
API of the Product must contain the union of the included Technologies. No further
modifications to the APIs of the included Technologies are allowed.

Concurrency8 Except for tests specifically required by this TCK to be rebuilt (if any), the binary
Conformance Tests supplied as part of the Test Suite or as updated by the Maintenance Lead
must be used to certify compliance.

19

* Concurrency9 The functional programmatic behavior of any binary class or interface must be
that defined by the Specifications.

14. Links

* Jakarta Concurrency TCK repository - https://github.com/jakartaee/concurrency
* Jakarta Concurrency specification/API repository - https://github.com/jakartaee/concurrency
 Jakarta Concurrency project home page - https://projects.eclipse.org/projects/ee4j.cu

* Arquillian and ShrinkWrap doc: https://arquillian.org/guides/shrinkwrap_introduction/

20

https://github.com/jakartaee/concurrency
https://github.com/jakartaee/concurrency
https://projects.eclipse.org/projects/ee4j.cu
https://arquillian.org/guides/shrinkwrap_introduction/

	Jakarta Concurrency TCK Reference Guide
	Table of Contents
	1. Preface
	1.1. Licensing
	1.2. Who Should Use This Guide
	1.3. Terminology - "SE mode" vs. "EE mode"
	1.4. Terminology - "Standalone TCK"
	1.5. Terminology - "Test Client" vs "Test Server"
	1.6. Before You Read This Guide

	2. Major TCK Changes
	3. What Tests Must I Pass To Certify Compatibility?
	3.1. Runtime Tests and Signature Tests Required
	3.2. Java SE level - Java 11 or Java 17

	4. Prerequisites
	4.1. Software To Install
	4.2. Testing Framework

	5. A Guide to the TCK Distribution
	5.1. Obtaining the Software
	5.2. The TCK Environment
	5.3. A Quick Tour of the TCK Artifacts

	6. TCK Test Requirements
	6.1. Runtime tests

	7. Example runner
	8. Set up a TCK runner project
	8.1. Test Client Dependencies
	8.2. Test Server Dependencies
	8.3. Configure TestNG
	8.4. Configure Arquillian
	8.5. Configure Application Server
	8.6. Configure Logging
	8.7. Advanced Configuration

	9. Running the TCK
	9.1. Expected Output

	10. Signature Tests
	10.1. Running signature tests
	10.2. Expected output

	11. TCK Challenges/Appeals Process
	11.1. Filing a Challenge

	12. Certification of Compatibility
	12.1. Filing a Certification Request

	13. Rules for Jakarta Concurrency Products
	14. Links

