
TCK User’s Guide for Technology
Implementors

Table of Contents
Eclipse Foundation . 1

Preface. 2

Who Should Use This Book. 2

Before You Read This Book . 2

Typographic Conventions. 3

Shell Prompts in Command Examples . 3

1 Introduction . 4

1.1 Compatibility Testing . 4

1.2 About the TCK . 6

1.3 Getting Started With the TCK . 13

2 Procedure for Certification . 14

2.1 Certification Overview . 14

2.2 Compatibility Requirements . 14

2.3 Test Appeals Process . 19

2.4 Specifications for Jakarta Authentication . 21

2.5 Libraries for Jakarta Authentication. 21

3 Installation . 22

3.1 Obtaining a Compatible Implementation . 22

3.2 Installing the Software . 22

4 Setup and Configuration . 24

4.1 Configuring Your Environment to Run the TCK Against the Reference Implementation 24

4.2 Configuring Your Environment to Repackage and Run the TCK Against the Vendor

Implementation

 27

4.3 Publishing the Test Applications . 29

4.4 Custom Configuration Handlers. 29

4.5 Custom Deployment Handlers . 30

4.6 Using the JavaTest Harness Software . 31

4.7 Using the JavaTest Harness Configuration GUI . 32

5 Executing Tests. 36

5.1 Starting JavaTest . 36

5.2 Running a Subset of the Tests . 38

5.3 Running the TCK Against another CI . 39

5.4 Running the TCK Against a Vendor’s Implementation . 40

5.5 Test Reports . 40

6 Debugging Test Problems . 43

6.1 Overview . 43

6.2 Test Tree. 44

6.3 Folder Information . 44

6.4 Test Information . 44

6.5 Report Files . 45

6.6 Configuration Failures . 45

A Frequently Asked Questions . 46

A.1 Where do I start to debug a test failure? . 46

A.2 How do I restart a crashed test run? . 46

A.3 What would cause tests be added to the exclude list? . 46

Eclipse Foundation
Technology Compatibility Kit User’s Guide for Jakarta Authentication

Release 1.1 for Jakarta EE

September 2019

Technology Compatibility Kit User’s Guide for Jakarta Authentication, Release 1.1 for Jakarta EE

Copyright © 2017, 2019 Oracle and/or its affiliates. All rights reserved.

This program and the accompanying materials are made available under the terms of the Eclipse
Public License v. 2.0, which is available at http://www.eclipse.org/legal/epl-2.0.

SPDX-License-Identifier: EPL-2.0

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

References in this document to JASPIC refer to the Jakarta Authentication, unless otherwise noted.

References in this document to JWS refer to Jakarta Web Services Metadata, unless otherwise noted.

Reference in this document to SAAJ refer to Jakarta SOAP Attachments, unless otherwise noted.

References in this document to JAXWS refer to Jakarta XML Web Services, unless otherwise noted.

References in this document to JACC refer to Jakarta Authorization, unless otherwise noted.

Eclipse Foundation

DRAFT TCK User’s Guide for Technology Implementors 1

http://www.eclipse.org/legal/epl-2.0

Preface
This guide describes how to install, configure, and run the Technology Compatibility Kit (TCK) that is
used to test the Jakarta Authentication (Authentication 1.1) technology.

The Authentication TCK is a portable, configurable automated test suite for verifying the compatibility
of a vendor’s implementation of the Authentication 1.1 Specification (hereafter referred to as the
vendor implementation or VI). The Authentication TCK uses the JavaTest harness version 5.0 to run the
test suite


Note All references to specific Web URLs are given for the sake of your convenience in
locating the resources quickly. These references are always subject to changes that are
in many cases beyond the control of the authors of this guide.

Jakarta EE is a community sponsored and community run program. Organizations contribute, along
side individual contributors who use, evolve and assist others. Commercial support is not available
through the Eclipse Foundation resources. Please refer to the Eclipse EE4J project site
(https://projects.eclipse.org/projects/ee4j). There, you will find additional details as well as a list of all
the associated sub-projects (Implementations and APIs), that make up Jakarta EE and define these
specifications. If you have questions about this Specification you may send inquiries to jaspic-
dev@eclipse.org. If you have questions about this TCK, you may send inquiries to jakartaee-tck-
dev@eclipse.org.

Who Should Use This Book
This guide is for vendors that implement the Authentication 1.1 technology to assist them in running
the test suite that verifies compatibility of their implementation of the Authentication 1.1 Specification.

Before You Read This Book
You should be familiar with the Authentication 1.1, version 1.1 Specification, which can be found at
https://jakarta.ee/specifications/authentication/1.1/.

Before running the tests in the Authentication TCK, you should familiarize yourself with the JavaTest
documentation which can be accessed at the JT Harness web site.

Who Should Use This Book

2 TCK User’s Guide for Technology Implementors DRAFT

https://projects.eclipse.org/projects/ee4j
mailto:jaspic-dev@eclipse.org
mailto:jaspic-dev@eclipse.org
mailto:jakartaee-tck-dev@eclipse.org
mailto:jakartaee-tck-dev@eclipse.org
https://jakarta.ee/specifications/authentication/1.1/
https://wiki.openjdk.java.net/display/CodeTools/JT+Harness

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

Convention Meaning Example

Boldface Boldface type indicates graphical user
interface elements associated with an
action, terms defined in text, or what
you type, contrasted with onscreen
computer output.

From the File menu, select Open Project.

A cache is a copy that is stored locally.

machine_name% *su*

Password:

Monospace Monospace type indicates the names of
files and directories, commands within
a paragraph, URLs, code in examples,
text that appears on the screen, or text
that you enter.

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

Italic Italic type indicates book titles,
emphasis, or placeholder variables for
which you supply particular values.

Read Chapter 6 in the User’s Guide.

Do not save the file.

The command to remove a file is rm filename.

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Bash shell shell_name-shell_version$

Bash shell for superuser shell_name-shell_version#

Typographic Conventions

DRAFT TCK User’s Guide for Technology Implementors 3

1 Introduction
This chapter provides an overview of the principles that apply generally to all Technology
Compatibility Kits (TCKs) and describes the Jakarta Authentication TCK (Authentication 1.1 TCK). It also
includes a high level listing of what is needed to get up and running with the Authentication TCK.

This chapter includes the following topics:

• Compatibility Testing

• About the TCK

• Getting Started With the TCK

1.1 Compatibility Testing
Compatibility testing differs from traditional product testing in a number of ways. The focus of
compatibility testing is to test those features and areas of an implementation that are likely to differ
across other implementations, such as those features that:

• Rely on hardware or operating system-specific behavior

• Are difficult to port

• Mask or abstract hardware or operating system behavior

Compatibility test development for a given feature relies on a complete specification and compatible
implementation (CI) for that feature. Compatibility testing is not primarily concerned with robustness,
performance, nor ease of use.

1.1.1 Why Compatibility Testing is Important

Jakarta platform compatibility is important to different groups involved with Jakarta technologies for
different reasons:

• Compatibility testing ensures that the Jakarta platform does not become fragmented as it is ported
to different operating systems and hardware environments.

• Compatibility testing benefits developers working in the Jakarta programming language, allowing
them to write applications once and then to deploy them across heterogeneous computing
environments without porting.

• Compatibility testing allows application users to obtain applications from disparate sources and
deploy them with confidence.

• Conformance testing benefits Jakarta platform implementors by ensuring a level playing field for

1.1 Compatibility Testing

4 TCK User’s Guide for Technology Implementors DRAFT

#GBFTK
#GBFQR
#GBFQW

all Jakarta platform ports.

1.1.2 TCK Compatibility Rules

Compatibility criteria for all technology implementations are embodied in the TCK Compatibility Rules
that apply to a specified technology. Each TCK tests for adherence to these Rules as described in
Chapter 2, "Procedure for Certification."

1.1.3 TCK Overview

A TCK is a set of tools and tests used to verify that a vendor’s compatible implementation of a Jakarta
EE technology conforms to the applicable specification. All tests in the TCK are based on the written
specifications for the Jakarta EE platform. A TCK tests compatibility of a vendor’s compatible
implementation of the technology to the applicable specification of the technology. Compatibility
testing is a means of ensuring correctness, completeness, and consistency across all implementations
developed by technology licensees.

The set of tests included with each TCK is called the test suite. Most tests in a TCK’s test suite are self-
checking, but some tests may require tester interaction. Most tests return either a Pass or Fail status.
For a given platform to be certified, all of the required tests must pass. The definition of required tests
may change from platform to platform.

The definition of required tests will change over time. Before your final certification test pass, be sure
to download the latest version of this TCK.

1.1.4 Jakarta EE Specification Process (JESP) Program and Compatibility
Testing

The Jakarta EE Specification Process (JESP) program is the formalization of the open process that has
been used since 2019 to develop and revise Jakarta EE technology specifications in cooperation with
the international Jakarta EE community. The JESP program specifies that the following three major
components must be included as deliverables in a final Jakarta EE technology release under the
direction of the responsible Expert Group:

• Technology Specification

• Compatible Implementation (CI)

• Technology Compatibility Kit (TCK)

For further information about the JESP program, go to Jakarta EE Specification Process community
page https://jakarta.ee/specifications.

1.1 Compatibility Testing

DRAFT TCK User’s Guide for Technology Implementors 5

rules.html#GBFSN
https://jakarta.ee/specifications

1.2 About the TCK
The Authentication TCK 1.1 is designed as a portable, configurable, automated test suite for verifying
the compatibility of a vendor’s implementation of the Authentication 1.1 Specification.

1.2.1 TCK Specifications and Requirements

This section lists the applicable requirements and specifications.

• Specification Requirements: Software requirements for a Authentication implementation are
described in detail in the Authentication 1.1 Specification. Links to the Authentication specification
and other product information can be found at https://jakarta.ee/specifications/authentication/1.1/.

• Authentication Version: The Authentication 1.1 TCK is based on the Authentication Specification,
Version 1.1.

• Compatible Implementation: One Authentication 1.1 Compatible Implementation, Eclipse GlassFish
5.1 is available from the Eclipse EE4J project (https://projects.eclipse.org/projects/ee4j). See the CI
documentation page at https://projects.eclipse.org/projects/ee4j.glassfish for more information.

See the Authentication TCK Release Notes for more specific information about Java SE version
requirements, supported platforms, restrictions, and so on.

1.2.2 TCK Components

The Authentication TCK 1.1 includes the following components:

• JavaTest harness version 5.0 and related documentation. See the ReleaseNotes-jtharness.html file
and the JT Harness web site for additional information.

• Authentication TCK signature tests; check that all public APIs are supported and/or defined as
specified in the Authentication Version 1.1 implementation under test.

• If applicable, an exclude list, which provides a list of tests that your implementation is not required
to pass.

• API tests for all of the Authentication API in all related packages:

◦ javax.security.auth.message

◦ javax.security.auth.message.callback

◦ javax.security.auth.message.config

◦ javax.security.auth.message.module

1.2 About the TCK

6 TCK User’s Guide for Technology Implementors DRAFT

https://jakarta.ee/specifications/authentication/1.1/
https://projects.eclipse.org/projects/ee4j
https://projects.eclipse.org/projects/ee4j.glassfish
https://wiki.openjdk.java.net/display/CodeTools/JT+Harness

The Authentication TCK tests run on the following platforms:

• Microsoft Windows 10

• Oracle Linux 7.1

1.2.3 JavaTest Harness

The JavaTest harness version 5.0 is a set of tools designed to run and manage test suites on different
Java platforms. To JavaTest, Jakarta EE can be considered another platform. The JavaTest harness can
be described as both a Java application and a set of compatibility testing tools. It can run tests on
different kinds of Java platforms and it allows the results to be browsed online within the JavaTest GUI,
or offline in the HTML reports that the JavaTest harness generates.

The JavaTest harness includes the applications and tools that are used for test execution and test suite
management. It supports the following features:

• Sequencing of tests, allowing them to be loaded and executed automatically

• Graphic user interface (GUI) for ease of use

• Automated reporting capability to minimize manual errors

• Failure analysis

• Test result auditing and auditable test specification framework

• Distributed testing environment support

To run tests using the JavaTest harness, you specify which tests in the test suite to run, how to run
them, and where to put the results as described in Chapter 4, "Setup and Configuration."

1.2.4 TCK Compatibility Test Suite

The test suite is the collection of tests used by the JavaTest harness to test a particular technology
implementation. In this case, it is the collection of tests used by the Authentication TCK 1.1 to test a
Authentication 1.1 implementation. The tests are designed to verify that a vendor’s runtime
implementation of the technology complies with the appropriate specification. The individual tests
correspond to assertions of the specification.

The tests that make up the TCK compatibility test suite are precompiled and indexed within the TCK
test directory structure. When a test run is started, the JavaTest harness scans through the set of tests
that are located under the directories that have been selected. While scanning, the JavaTest harness
selects the appropriate tests according to any matches with the filters you are using and queues them
up for execution.

1.2 About the TCK

DRAFT TCK User’s Guide for Technology Implementors 7

config.html#GBFVV

1.2.5 Exclude Lists

Each version of a TCK includes an Exclude List contained in a .jtx file. This is a list of test file URLs that
identify tests which do not have to be run for the specific version of the TCK being used. Whenever
tests are run, the JavaTest harness automatically excludes any test on the Exclude List from being
executed.

A vendor’s compatible implementation is not required to pass or run any test on the Exclude List. The
Exclude List file, <TS_HOME>/bin/ts.jtx, is included in the Authentication TCK.



From time to time, updates to the Exclude List are made available. The exclude list is
included in the Jakarta TCK ZIP archive. Each time an update is approved and
released, the version number will be incremented. You should always make sure you
are using an up-to-date copy of the Exclude List before running the Authentication
TCK to verify your implementation.

A test might be in the Exclude List for reasons such as:

• An error in an underlying implementation API has been discovered which does not allow the test
to execute properly.

• An error in the specification that was used as the basis of the test has been discovered.

• An error in the test itself has been discovered.

• The test fails due to a bug in the tools (such as the JavaTest harness, for example).

In addition, all tests are run against the compatible implementations. Any tests that fail when run on a
compatible Jakarta platform are put on the Exclude List. Any test that is not specification-based, or for
which the specification is vague, may be excluded. Any test that is found to be implementation
dependent (based on a particular thread scheduling model, based on a particular file system behavior,
and so on) may be excluded.


Vendors are not permitted to alter or modify Exclude Lists. Changes to an Exclude List
can only be made by using the procedure described in Section 2.3.1, "TCK Test Appeals
Steps."

1.2.6 TCK Configuration

You need to set several variables in your test environment, modify properties in the
<TS_HOME>/bin/ts.jte file, and then use the JavaTest harness to configure and run the Authentication
tests, as described in Chapter 4, "Setup and Configuration."

1.2 About the TCK

8 TCK User’s Guide for Technology Implementors DRAFT

rules.html#CJAJEAEI
rules.html#CJAJEAEI
config.html#GBFVV

1.2.7 Authentication Technology Overview

The Authentication 1.1 Specification defines a service provider interface (SPI) by which authentication
providers implementing message authentication mechanisms can be integrated in client and server
message processing runtimes or containers.

The Authentication TCK uses a Test Suite SPI Verifier (TSSV) to verify whether the vendor’s message
processing runtimes invoke the correct SPI in the proper order.

TSSV includes test suite implementations of:

• AuthConfigFactory

• AuthConfigProvider

• AuthConfigClient, AuthConfigServer

• AuthContextClient, AuthContextServer

• AuthenticationModulesClient, AuthenticationModules Server

TSSV gets loaded into vendor’s message processing runtime using one of the following ways, as defined
by the Authentication 1.1 Specification:

• By defining a property in JAVA_HOME/jre/lib/security/java.security as follows:
authconfigprovider.factory=com.sun.ts.tests.jaspic.tssv.config.TSAuthConfigFactory

• By calling the registerConfigProvider() method in a vendor’s AuthConfigFactory with the following
values:

◦ Test Suite Provider ClassName

◦ Map of properties

◦ Message Layer (such as SOAP or HttpServlet)

◦ Application Context Identifier

◦ A description of the provider


For the Authentication TCK, more than one provider is registered in the vendor’s
message processing runtime.

In a typical test scenario (for each profile of Servlet or SOAP), an application is deployed into a
vendor’s runtime, and a client invokes the service. The message policies required for the secure
invocations are built into TSSV implementations, and the runtime is analyzed to see whether it invokes
the correct SPIs at the proper time.

TSSV uses Java logging APIs to log the client and server invocation into a log file (TSSVLog.txt), this log
file is used by the TCK tests to validate actual logged runtime information against expected results to
ensure that the runtime is compliant. The jaspic_util_web.war file contains the Authentication log file

1.2 About the TCK

DRAFT TCK User’s Guide for Technology Implementors 9

processor, which writes output to the TSSVLog.txt file. The TSSVLog.txt file is put into the location
defined by the log.file.location property in the ts.jte file.

1.2.8 Authentication TSSV Files

The following sections describe the tssv.jar, ProviderConfiguration.xml, and provider-

configuration.xsd files that are used by the Authentication TCK tests.

1.2.8.1 tssv.jar file

The tssv.jar file contains classes necessary for populating a vendor implementation with a CTS
AuthConfigFactory (ACF) as well as information used to register CTS providers. The tssv.jar file
contains the class files for the Test Suite SPI Verifier. The tssv.jar file classes need to be loaded by the
vendor implementation runtime during startup.

1.2.8.2 ProviderConfiguration.xml file

The format is a test suite-specific format. The file was designed to contain test provider information
the test suite uses to populate the ACF with a list of providers for testing. The file needs to be copied to
the location specified in the ts.jte file by the provider.configuration.file property. An edit to the
ProviderConfiguration.xml file may be required for the vendor implementation. The current
application context Ids are generic and should work as is, but there could be some scenarios in which
the application Context Ids may need to be modified.

The value of the <app-context-id> element in the ProviderConfiguration.xml file should reflect what the
vendor implementation will use for its internal representation of the application context identifier for
a registered provider. Said differently, the test suite registers its providers with information from the
ProviderConfiguration.xml file but every implementation is not guaranteed to use the application
context identifier that is used in the call to register the configuration provider. This value of the <app-
context-id> element corresponds to the appContext argument in the
AuthConfigFactory.registerConfigProvider() API. The API documentation for this method indicates that
the appContext argument may be used but is not guaranteed to be used.

The default ProviderConfiguration.xml file should work without modification, but a vendor may need
to alter the value of the <app-context-id> element as previously described to accommodate the
implementation under test. Vendors need to find the correct application context identifier for their
implementation.

Vendors should enable two levels of logging output to get finer levels of debugging and tracing
information than is turned on by default. This is done by setting the traceflag property in the ts.jte
file to "true" and setting the HARNESS_DEBUG environment variable to "true". If both of these are set,

1.2 About the TCK

10 TCK User’s Guide for Technology Implementors DRAFT

the debug output should contain application context identifier information.

1.2.8.3 provider-configuration.xsd file

The provider-configuration.xsd file is a schema file that resides in the same directory as the
ProviderConfiguration.xml file and describes the ProviderConfiguration.xml file. This file should not be
edited.

thref4]]

1.2.9 Baseline Compatibility Requirements

To obtain Baseline compliance, a vendor must meet the Baseline Compatibility requirements.

1.2.10 Servlet Profile Tests

To obtain Servlet Profile compliance, a vendor must meet the Baseline Compatibility requirements as
well as the Servlet Profile requirements.

1.2.11 SOAP Profile Tests

Since various SOAP implementations are possible in a vendor’s message processing runtime, the
Authentication TCK considers the following SOAP implementations:

• SOAP implementation in a Jakarta EE environment

• SOAP implementation in standalone container (Java SE only)

• Non-container based SOAP implementation

For SOAP profile tests, the client invocations of webservice have been abstracted into two different
types:

• Invocations of Service in a Jakarta EE environment (for example, using JAXWS annotations
@WebServiceRef for looking up the service and @WebService for service definition).

• Invocations of Service in a standalone (i.e. Java SE only) environment (this includes standalone
container and non-container based implementation).
The following are used to get the service reference:

◦ WSDL

◦ Service QName (for example, QNAME(NAMESPACEURI, SERVICENAME))

◦ Service Class (such as HelloService.class)

1.2 About the TCK

DRAFT TCK User’s Guide for Technology Implementors 11

◦ PORT QName (for example, QName(NAMESPACEURI, PORT_NAME))

◦ Service Endpoint Interface class (for example, Hello.class)

The deployment abstraction for handling various SOAP implementations are handled in the following
ways:

• A Jakarta Deployment version 1.2 deployment is used for Jakarta EE based implementations. This is
differentiated by using a different deliverable class,
deliverable.class=com.sun.ts.lib.deliverable.jaspic.JaspicJavaEEDeliverable, which is
configurable in the ts.jte file. Vendors need to write their own Deliverable class that can be used
to deploy in their environment.

• For standalone implementations (this includes container and non-container based
implementations), a different deliverable class is used,
deliverable.class=com.sun.ts.lib.deliverable.jaspic.JaspicDeliverable. Along with this
deliverable class an Ant file, TS_HOME/bin/xml/deploy.xml, is used to deploy in GlassFish Server.
Vendors are expected to implement the deploy and undeploy targets in deploy.xml to suite their
environment.


Two deliverable implementations are provided with the GlassFish server. One
implementation, for Java SE only servers, turns off auto deployment and leaves the
deployment up to the licensee by way of an Ant target.

• Along with the deliverable class, a configurable property in the ts.jte file, platform.mode, is used to
distinguish the different SOAP implementations.

◦ platform.mode=javaEE (for Jakarta EE based implementations)

◦ platform.mode=standalone


A deployable EAR , WAR, or JAR file is created, based on the value specified by the
platform.mode property in the ts.jte file.

• For non-container based standalone SOAP implementations, vendors are expected to deploy the
service and make it available for client invocations. For this purpose, a no-op for deploy and
undeploy targets can be implemented in the deploy.xml file.

The Authentication TCK uses Jakarta Web Services Metadata, 2.1 metadata based annotations to define
web service applications. Although Jakarta Web Services Metadata, 2.1 support is not required in a
vendor’s SOAP implementation, using web services metadata simplifies the definition of web services
and the linking between various artifacts of web services (the WSDL, ServiceEndpoint, and
implementation and their associations). Using other forms of web services implementation will lead to
separate binding files, web services description files (webservices.xml) which are different for different
SOAP implementations, such as a Jakarta EE based SOAP implementation, standalone implementation,
and so on.

Since vendors are already expected to generate web service artifacts using wsgen and wsimport tools,

1.2 About the TCK

12 TCK User’s Guide for Technology Implementors DRAFT

writing an annotation processor to support Jakarta Web Services Metadata, 2.1 based annotations is
just a step further towards making a better SOAP implementation. Also having annotated web services
helps vendors generate different artifacts that suit their SOAP implementation.


For Jakarta EE based SOAP implementations, Jakarta Web Services Metadata, 2.1
support is required.


The Jakarta EE Specification Process support multiple compatible implementations.
These instructions explain how to get started with the Eclipse GlassFish 5.1 CI. If you
are using another compatible implementation, refer to material provided by that
implementation for specific instructions and procedures.

1.3 Getting Started With the TCK
This section provides an general overview of what needs to be done to install, set up, test, and use the
Authentication TCK. These steps are explained in more detail in subsequent chapters of this guide.

1. Make sure that the following software has been correctly installed on the system hosting the
JavaTest harness:

• Java SE 8

• A CI for Authentication 1.1. One example is Eclipse GlassFish 5.1.

• Authentication TCK version 1.1, which includes:

◦ JDOM 1.0

◦ Apache Commons HTTP Client 3.1

◦ Apache Commons Logging 1.1.1

◦ Apache Commons Codec 1.3

• The Authentication 1.1 Vendor Implementation (VI)
See the documentation for each of these software applications for installation instructions. See
Chapter 3, "Installation," for instructions on installing the Authentication TCK.

1. Set up the Authentication TCK software.
See Chapter 4, "Setup and Configuration," for details about the following steps.

1. Set up your shell environment.

2. Modify the required properties in the <TS_HOME>/bin/ts.jte file.

3. Configure the JavaTest harness.

2. Test the Authentication 1.1 implementation.
Test the Authentication implementation installation by running the test suite. See Chapter 5,
"Executing Tests."

1.3 Getting Started With the TCK

DRAFT TCK User’s Guide for Technology Implementors 13

install.html#GBFTP
config.html#GBFVV
using.html#GBFWO
using.html#GBFWO

2 Procedure for Certification
This chapter describes the compatibility testing procedure and compatibility requirements for Jakarta
Authentication. This chapter contains the following sections:

• Certification Overview

• Compatibility Requirements

• Test Appeals Process

• Specifications for Jakarta Authentication

• Libraries for Jakarta Authentication

2.1 Certification Overview
The certification process for Authentication 1.1 consists of the following activities:

• Install the appropriate version of the Technology Compatibility Kit (TCK) and execute it in
accordance with the instructions in this User’s Guide.

• Ensure that you meet the requirements outlined in Compatibility Requirements below.

• Certify to the Eclipse Foundation that you have finished testing and that you meet all of the
compatibility requirements, as required by the Eclipse Foundation TCK License.

2.2 Compatibility Requirements
The compatibility requirements for Authentication 1.1 consist of meeting the requirements set forth by
the rules and associated definitions contained in this section.

2.2.1 Definitions

These definitions are for use only with these compatibility requirements and are not intended for any
other purpose.

Table 2-1 Definitions

2.1 Certification Overview

14 TCK User’s Guide for Technology Implementors DRAFT

#CJAFFDGI
#CJAFGIGG
#CJAIIBDJ
#CJAJECIE
#CJABAHGI
#CJAFGIGG

Term Definition

API Definition Product A Product for which the only Java class files contained in the product are
those corresponding to the application programming interfaces defined by
the Specifications, and which is intended only as a means for formally
specifying the application programming interfaces defined by the
Specifications.

Computational Resource A piece of hardware or software that may vary in quantity, existence, or
version, which may be required to exist in a minimum quantity and/or at a
specific or minimum revision level so as to satisfy the requirements of the
Test Suite.

Examples of computational resources that may vary in quantity are RAM
and file descriptors.

Examples of computational resources that may vary in existence (that is,
may or may not exist) are graphics cards and device drivers.

Examples of computational resources that may vary in version are
operating systems and device drivers.

Configuration
Descriptor

Any file whose format is well defined by a specification and which contains
configuration information for a set of Java classes, archive, or other feature
defined in the specification.

Conformance Tests All tests in the Test Suite for an indicated Technology Under Test, as released
and distributed by the Eclipse Foundation, excluding those tests on the
published Exclude List for the Technology Under Test.

Container An implementation of the associated Libraries, as specified in the
Specifications, and a version of a Java Platform, Standard Edition Runtime
Product, as specified in the Specifications, or a later version of a Java
Platform, Standard Edition Runtime Product that also meets these
compatibility requirements.

Documented Made technically accessible and made known to users, typically by means
such as marketing materials, product documentation, usage messages, or
developer support programs.

Exclude List The most current list of tests, released and distributed by the Eclipse
Foundation, that are not required to be passed to certify conformance. The
Jakarta EE Specification Committee may add to the Exclude List for that Test
Suite as needed at any time, in which case the updated TCK version
supplants any previous Exclude Lists for that Test Suite.

Libraries The class libraries, as specified through the Jakarta EE Specification Process
(JESP), for the Technology Under Test.

The Libraries for Jakarta Authentication are listed at the end of this chapter.

2.2 Compatibility Requirements

DRAFT TCK User’s Guide for Technology Implementors 15

Term Definition

Location Resource A location of classes or native libraries that are components of the test tools
or tests, such that these classes or libraries may be required to exist in a
certain location in order to satisfy the requirements of the test suite.

For example, classes may be required to exist in directories named in a
CLASSPATH variable, or native libraries may be required to exist in
directories named in a PATH variable.

Maintenance Lead The corresponding Jakarta EE Specification Project is responsible for
maintaining the Specification, and the TCK for the Technology. The
Specification Project Team will propose revisions and updates to the Jakarta
EE Specification Committee which will approve and release new versions of
the specification and TCK.

Operating Mode Any Documented option of a Product that can be changed by a user in order
to modify the behavior of the Product.

For example, an Operating Mode can be binary (enable/disable
optimization), an enumeration (select from a list of protocols), or a range
(set the maximum number of active threads).

Note that an Operating Mode may be selected by a command line switch, an
environment variable, a GUI user interface element, a configuration or
control file, etc.

Product A vendor’s product in which the Technology Under Test is implemented or
incorporated, and that is subject to compatibility testing.

Product Configuration A specific setting or instantiation of an Operating Mode.

For example, a Product supporting an Operating Mode that permits user
selection of an external encryption package may have a Product
Configuration that links the Product to that encryption package.

Rebuildable Tests Tests that must be built using an implementation-specific mechanism. This
mechanism must produce specification-defined artifacts. Rebuilding and
running these tests against a known compatible implementation verifies
that the mechanism generates compatible artifacts.

Resource A Computational Resource, a Location Resource, or a Security Resource.

Rules These definitions and rules in this Compatibility Requirements section of
this User’s Guide.

Runtime The Containers specified in the Specifications.

2.2 Compatibility Requirements

16 TCK User’s Guide for Technology Implementors DRAFT

Term Definition

Security Resource A security privilege or policy necessary for the proper execution of the Test
Suite.

For example, the user executing the Test Suite will need the privilege to
access the files and network resources necessary for use of the Product.

Specifications The documents produced through the Jakarta EE Specification Process
(JESP) that define a particular Version of a Technology.

The Specifications for the Technology Under Test are referenced later in this
chapter.

Technology Specifications and one or more compatible implementations produced
through the Jakarta EE Specification Process (JESP).

Technology Under Test Specifications and a compatible implementation for Jakarta Authentication
Version 1.1.

Test Suite The requirements, tests, and testing tools distributed by the Maintenance
Lead as applicable to a given Version of the Technology.

Version A release of the Technology, as produced through the Jakarta EE
Specification Process (JESP).

2.2.2 Rules for Jakarta Authentication Products

The following rules apply for each version of an operating system, software component, and hardware
platform Documented as supporting the Product:

Authentication1 The Product must be able to satisfy all applicable compatibility requirements,
including passing all Conformance Tests, in every Product Configuration and in every combination of
Product Configurations, except only as specifically exempted by these Rules.

For example, if a Product provides distinct Operating Modes to optimize performance, then that
Product must satisfy all applicable compatibility requirements for a Product in each Product
Configuration, and combination of Product Configurations, of those Operating Modes.

Authentication1.1 If an Operating Mode controls a Resource necessary for the basic execution of the
Test Suite, testing may always use a Product Configuration of that Operating Mode providing that
Resource, even if other Product Configurations do not provide that Resource. Notwithstanding such
exceptions, each Product must have at least one set of Product Configurations of such Operating Modes
that is able to pass all the Conformance Tests.

For example, a Product with an Operating Mode that controls a security policy (i.e., Security Resource)
which has one or more Product Configurations that cause Conformance Tests to fail may be tested

2.2 Compatibility Requirements

DRAFT TCK User’s Guide for Technology Implementors 17

using a Product Configuration that allows all Conformance Tests to pass.

Authentication1.2 A Product Configuration of an Operating Mode that causes the Product to report
only version, usage, or diagnostic information is exempted from these compatibility rules.

Authentication1.3 An API Definition Product is exempt from all functional testing requirements
defined here, except the signature tests.

Authentication2 Some Conformance Tests may have properties that may be changed. Properties that
can be changed are identified in the configuration interview. Properties that can be changed are
identified in the JavaTest Environment (.jte) files in the Test Suite installation. Apart from changing
such properties and other allowed modifications described in this User’s Guide (if any), no source or
binary code for a Conformance Test may be altered in any way without prior written permission. Any
such allowed alterations to the Conformance Tests will be provided via the Jakarta EE Specification
Project website and apply to all vendor compatible implementations.

Authentication3 The testing tools supplied as part of the Test Suite or as updated by the Maintenance
Lead must be used to certify compliance.

Authentication4 The Exclude List associated with the Test Suite cannot be modified.

Authentication5 The Maintenance Lead can define exceptions to these Rules. Such exceptions would
be made available as above, and will apply to all vendor implementations.

Authentication6 All hardware and software component additions, deletions, and modifications to a
Documented supporting hardware/software platform, that are not part of the Product but required for
the Product to satisfy the compatibility requirements, must be Documented and available to users of
the Product.

For example, if a patch to a particular version of a supporting operating system is required for the
Product to pass the Conformance Tests, that patch must be Documented and available to users of the
Product.

Authentication7 The Product must contain the full set of public and protected classes and interfaces
for all the Libraries. Those classes and interfaces must contain exactly the set of public and protected
methods, constructors, and fields defined by the Specifications for those Libraries. No subsetting,
supersetting, or modifications of the public and protected API of the Libraries are allowed except only
as specifically exempted by these Rules.

Authentication7.1 If a Product includes Technologies in addition to the Technology Under Test, then it
must contain the full set of combined public and protected classes and interfaces. The API of the
Product must contain the union of the included Technologies. No further modifications to the APIs of
the included Technologies are allowed.

Authentication8 Except for tests specifically required by this TCK to be rebuilt (if any), the binary
Conformance Tests supplied as part of the Test Suite or as updated by the Maintenance Lead must be
used to certify compliance.

2.2 Compatibility Requirements

18 TCK User’s Guide for Technology Implementors DRAFT

Authentication9 The functional programmatic behavior of any binary class or interface must be that
defined by the Specifications.

2.3 Test Appeals Process
Jakarta has a well established process for managing challenges to its TCKs. Any implementor may
submit a challenge to one or more tests in the Authentication TCK as it relates to their implementation.
Implementor means the entity as a whole in charge of producing the final certified release. Challenges
filed should represent the consensus of that entity.

2.3.1 Valid Challenges

Any test case (e.g., test class, @Test method), test case configuration (e.g., deployment descriptor), test
beans, annotations, and other resources considered part of the TCK may be challenged.

The following scenarios are considered in scope for test challenges:

• Claims that a test assertion conflicts with the specification.

• Claims that a test asserts requirements over and above that of the specification.

• Claims that an assertion of the specification is not sufficiently implementable.

• Claims that a test is not portable or depends on a particular implementation.

2.3.2 Invalid Challenges

The following scenarios are considered out of scope for test challenges and will be immediately closed
if filed:

• Challenging an implementation’s claim of passing a test. Certification is an honor system and these
issues must be raised directly with the implementation.

• Challenging the usefulness of a specification requirement. The challenge process cannot be used to
bypass the specification process and raise in question the need or relevance of a specification
requirement.

• Claims the TCK is inadequate or missing assertions required by the specification. See the
Improvement section, which is outside the scope of test challenges.

• Challenges that do not represent a consensus of the implementing community will be closed until
such time that the community does agree or agreement cannot be made. The test challenge process
is not the place for implementations to initiate their own internal discussions.

• Challenges to tests that are already excluded for any reason.

• Challenges that an excluded test should not have been excluded and should be re-added should be
opened as a new enhancement request

2.3 Test Appeals Process

DRAFT TCK User’s Guide for Technology Implementors 19

Test challenges must be made in writing via the Authentication specification project issue tracker as
described in Section 2.3.3, "TCK Test Appeals Steps."

All tests found to be invalid will be placed on the Exclude List for that version of the Authentication
TCK.

2.3.3 TCK Test Appeals Steps

1. Challenges should be filed via the Jakarta Authentication specification project’s issue tracker using
the label challenge and include the following information:

◦ The relevant specification version and section number(s)

◦ The coordinates of the challenged test(s)

◦ The exact TCK and exclude list versions

◦ The implementation being tested, including name and company

◦ The full test name

◦ A full description of why the test is invalid and what the correct behavior is believed to be

◦ Any supporting material; debug logs, test output, test logs, run scripts, etc.

2. Specification project evaluates the challenge.
Challenges can be resolved by a specification project lead, or a project challenge triage team, after a
consensus of the specification project committers is reached or attempts to gain consensus fails.
Specification projects may exercise lazy consensus, voting or any practice that follows the
principles of Eclipse Foundation Development Process. The expected timeframe for a response is
two weeks or less. If consensus cannot be reached by the specification project for a prolonged
period of time, the default recommendation is to exclude the tests and address the dispute in a
future revision of the specification.

3. Accepted Challenges.
A consensus that a test produces invalid results will result in the exclusion of that test from
certification requirements, and an immediate update and release of an official distribution of the
TCK including the new exclude list. The associated challenge issue must be closed with an accepted
label to indicate it has been resolved.

4. Rejected Challenges and Remedy.
When a`challenge` issue is rejected, it must be closed with a label of invalid to indicate it has been
rejected. There appeal process for challenges rejected on technical terms is outlined in Escalation
Appeal. If, however, an implementer feels the TCK challenge process was not followed, an appeal
issue should be filed with specification project’s TCK issue tracker using the label challenge-appeal.
A project lead should escalate the issue with the Jakarta EE Specification Committee via email
(jakarta.ee-spec.committee@eclipse.org). The committee will evaluate the matter purely in terms of
due process. If the appeal is accepted, the original TCK challenge issue will be reopened and a label
of appealed-challenge added, along with a discussion of the appeal decision, and the challenge-

2.3 Test Appeals Process

20 TCK User’s Guide for Technology Implementors DRAFT

#CJAJEAEI
mailto:jakarta.ee-spec.committee@eclipse.org

appeal issue with be closed. If the appeal is rejected, the challenge-appeal issue should closed with a
label of invalid.

5. Escalation Appeal.
If there is a concern that a TCK process issue has not been resolved satisfactorily, the Eclipse
Development Process Grievance Handling procedure should be followed to escalate the resolution.
Note that this is not a mechanism to attempt to handle implementation specific issues.

2.4 Specifications for Jakarta Authentication
The Jakarta Authentication specification is available from the specification project web-site:
https://jakarta.ee/specifications/authentication/1.1/.

2.5 Libraries for Jakarta Authentication
The following is a list of the packages comprising the required class libraries for Authentication 1.1:

• javax.security.auth.message

• javax.security.auth.message.callback

• javax.security.auth.message.config

• javax.security.auth.message.module

For the latest list of packages, also see:

https://jakarta.ee/specifications/authentication/1.1/

2.4 Specifications for Jakarta Authentication

DRAFT TCK User’s Guide for Technology Implementors 21

https://www.eclipse.org/projects/dev_process/#6_5_Grievance_Handling
https://www.eclipse.org/projects/dev_process/#6_5_Grievance_Handling
https://jakarta.ee/specifications/authentication/1.1/
https://jakarta.ee/specifications/authentication/1.1/

3 Installation
This chapter explains how to install the Jakarta Authentication TCK software.

After installing the software according to the instructions in this chapter, proceed to Chapter 4, "Setup
and Configuration," for instructions on configuring your test environment.

3.1 Obtaining a Compatible Implementation
Each compatible implementation (CI) will provide instructions for obtaining their implementation.
Eclipse GlassFish 5.1 is a compatible implementation which may be obtained from
https://projects.eclipse.org/projects/ee4j.glassfish

3.2 Installing the Software
Before you can run the Authentication TCK tests, you must install and set up the following software
components:

• Java SE 8

• A CI for Authentication 1.1, one example is Eclipse GlassFish 5.1

• Authentication TCK version 1.1, which includes:

◦ JDOM 1.0

◦ Apache Commons HTTP Client 3.1

◦ Apache Commons Logging 1.1.1

◦ Apache Commons Codec 1.3

• The Authentication 1.1 Vendor Implementation (VI)

Follow these steps:

1. Install the Java SE 8 software, if it is not already installed.
Download and install the Java SE 8 software from http://www.oracle.com/technetwork/java/javase/
downloads/index.html. Refer to the installation instructions that accompany the software for
additional information.

2. Install the Authentication TCK 1.1 software.

1. Copy or download the Authentication TCK software to your local system.
You can obtain the Authentication TCK software from the Jakarta EE site https://jakarta.ee/
specifications/authentication/1.1/.

3.1 Obtaining a Compatible Implementation

22 TCK User’s Guide for Technology Implementors DRAFT

config.html#GBFVV
config.html#GBFVV
https://projects.eclipse.org/projects/ee4j.glassfish
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://jakarta.ee/specifications/authentication/1.1/
https://jakarta.ee/specifications/authentication/1.1/

2. Use the unzip command to extract the bundle in the directory of your choice:
unzip jaspictck-x.x_dd-Mmm-YYYY.zip

This creates the TCK directory. The TCK is the test suite home, <TS_HOME>.

3. Install the Jakarta EE 8 CI software (the servlet Web container used for running the Authentication
TCK with the Authentication 1.1 CI), if it is not already installed.
Download and install the Servlet Web container with the Authentication 1.1 CI used for running the
Authentication TCK 1.1, represented by the Jakarta EE 8 CI. One CI is Eclipse GlassFish 5.1. You may
obtain a copy of this CI by downloading it from https://projects.eclipse.org/projects/ee4j.glassfish.

4. Install a Authentication 1.1 Compatible Implementation.
A Compatible Implementation is used to validate your initial configuration and setup of the
Authentication TCK 1.1 tests, which are explained further in Chapter 4, "Setup and Configuration."
The Compatible Implementations for Authentication are listed on the Jakarta EE Specifications web
site: https://jakarta.ee/specifications/authentication/1.1/.

5. Install a Web server on which the Authentication TCK test applications can be published for testing
the VI.

6. Install the Authentication VI to be tested.
Follow the installation instructions for the particular VI under test.

3.2 Installing the Software

DRAFT TCK User’s Guide for Technology Implementors 23

https://projects.eclipse.org/projects/ee4j.glassfish
config.html#GBFVV
https://jakarta.ee/specifications/authentication/1.1/

4 Setup and Configuration


The Jakarta EE Specification process provides for any number of compatible
implementations. As additional implementations become available, refer to project or
product documentation from those vendors for specific TCK setup and operational
guidance.

This chapter describes how to set up the Authentication TCK and JavaTest harness software. Before
proceeding with the instructions in this chapter, be sure to install all required software, as described in
Chapter 3, "Installation."

After completing the instructions in this chapter, proceed to Chapter 5, "Executing Tests," for
instructions on running the Authentication TCK.

4.1 Configuring Your Environment to Run the TCK
Against the Reference Implementation
After configuring your environment as described in this section, continue with the instructions in
Section 4.6, "Using the JavaTest Harness Software."



In these instructions, variables in angle brackets need to be expanded for each
platform. For example, <TS_HOME> becomes $TS_HOME on Solaris/Linux and %TS_HOME% on
Windows. In addition, the forward slashes (/) used in all of the examples need to be
replaced with backslashes (\) for Windows. Finally, be sure to use the appropriate
separator for your operating system when specifying multiple path entries (; on
Windows, : on UNIX/Linux).

On Windows, you must escape any backslashes with an extra backslash in path
separators used in any of the following properties, or use forward slashes as a path
separator instead.

4.1.2 To Configure Your Environment for the Jakarta Authentication TCK

This section describes how to configure your environment to run the Authentication TCK tests.

Deploy the Authentication TCK tests in the manner that your implementation requires, based on the
type of profile.

If your implementation is Jakart EE based, set the platform.mode property in the ts.jte file to javaEE.

4.1 Configuring Your Environment to Run the TCK Against the Reference Implementation

24 TCK User’s Guide for Technology Implementors DRAFT

install.html#GBFTP
using.html#GBFWO
#GBFUY

If your implementation is not Jakarta EE based, set the platform.mode property in the ts.jte file to
standalone.

1. Set the following environment variables in your shell environment:

1. JAVA_HOME to the directory in which Java SE 8 is installed

2. TS_HOME to the directory in which the Authentication TCK 1.1 software is installed

3. PATH to include the following directories: JAVA_HOME/bin, JASPIC_HOME/bin, and
<TS_HOME>/tools/ant/bin

2. Edit your <TS_HOME>/bin/ts.jte file and set the following environment variables:

1. pathsep to the type of path separator used by your operating system
The default is : for Solaris/Linux. Windows users should change this value to ;.

2. Set the jaspic.home property to the root directory of implementation under test.

3. Set the orb.host property to the name of the machine on which you are running the
Authentication TCK tests.

4. Set the orb.port property to the port number of the machine on which you are running the
Authentication TCK tests.

5. Set the sigTestClasspath property to point to the implementation classes that are to be validated
for signature compliance. This classpath must also include any other classes that are
referenced, implemented, or extended by your implementation .

6. Set the servlet.is.jsr115.compatible property based on whether or not you are running the
Servlet profile in a Jakarta Authorization 1.5 compatible container.

7. Set the soap.is.jsr115.compatible property based on whether or not you are running the SOAP
profile in a Jakarta Authorization 1.5 compatible container.

8. Set the log.file.location property to the location where your implementation’s log files and
the Authentication log file will be written.

9. Set the logical.hostname.servlet property to the logical host that will process Servlet requests.
Servlet requests may be directed to a logical host using various physical or virtual host names
or addresses. A message processing runtime may be composed of multiple logical hosts. This
setting is required to properly identify the Servlet profile’s application context identifier
hostname. If the logical host that will process Servlet requests does not exist, you can set this to
the default hostname of your implementation’s Web server.

10. Set the logical.hostname.soap property to the name of the logical host that will process SOAP
requests.
This hostname is used in the implementation runtime’s application context identifier in the
SOAP profile.

11. Set the vendor.authconfig.factory property to specify your AuthConfigFactory class.
This property setting will be used by the Authentication tests to register the test suite’s provider
in your AuthConfigFactory.

3. Run ant config.vi.

4.1 Configuring Your Environment to Run the TCK Against the Reference Implementation

DRAFT TCK User’s Guide for Technology Implementors 25

This task configures the implementation under test to run the Authentication TCK tests by doing the
following:

1. Copies jaspic.jar and tsharness.jar to the lib extension directory (for example,
/glassfish/domains/domain1/lib/ext)

2. Set up users and passwords for your implementation.
For the purpose of running the CTS test suite, these should be set as follows:

User Password Groups

j2ee_vi j2ee_vi staff

javajoe javajoe guest

j2ee j2ee staff, mgr, asadmin

Also make sure the principal to role-mappings that are specified in the runtime XML files are
properly mapped in your environment. Note that the principal-to-role mappings may vary for
each application.

3. Install the client-side certificate in the trustStore in your implementation.
Certificates are located <TS_HOME>/bin/certificates.
Use the certificate that suits your environment:

▪ cts_cert - For importing the CTS client certificate into a truststore

▪ clientcert.jks - Used by the J2SE runtime to identify the CTS client’s identity

▪ clientcert.p12 – Contains CTS client certificate in pkcs12 format

4. Append the file <TS_HOME>/bin/server_policy.append to the Java policy file or files on your
implementation.
This file contains the grant statements used by the test harness, signature tests, and API tests.

5. Appends the file <TS_HOME>/bin/client_policy.append to the application client’s Java policy file,
which is referenced in the TestExecuteAppClient section of the ts.jte file.

6. Creates a JVM option that increases the MaxPermSize for your implementation.

4. Run ant enable.jaspic.
This task performs the configuration necessary for adding the test suite’s SPI Verifier(TSSV) to
your implementation. Specifically, ant enable.jaspic performs the following operations:

1. Sets the jvm option -Dlog.file.location in your implementation.
This is the location of the log file where the Test Suite SPI Verifier (TSSV) creates log messages,
which will be used by the Authentication TCK tests, to identify the test status.

2. Sets the jvm option -Dprovider.configuration.file in your implementation.
This option is used to identify the provider configuration file that will be used by
TSAuthConfigFactory to load the providers required by the Authentication TCK tests.

3. Sets the jvm option -Dschema.file.location=${schema.file.location} in your implementation.
This option is used to identify the location of the schema file that is used by the Provider-
Configuration.xml file.

4.1 Configuring Your Environment to Run the TCK Against the Reference Implementation

26 TCK User’s Guide for Technology Implementors DRAFT

4. Sets up your implementation to use the test suite’s AuthConfigFactory.
This can be done in one of the following ways:

▪ Copy <TS_HOME>/bin/ts.java.security to the location in your implementation where the
security configuration files reside. For example, the Eclipse GlassFish Server security
configuration files are in the <JAVAEE_HOME>glassfish/domains/domain1/config directory. After
the file has been copied, use the -Djava.security.properties JVM option to direct your
implementation to use this security property file. For example, to direct Eclipse GlassFish
Server to use the ts.java.security file, you would use this JVM option:

-Djava.security.properties=glassfish/domains/domain1/config/ts.java.security

▪ Add the following lines as a single line to the JAVA_HOME/jre/lib/security/java.security file:

authconfigprovider.factory=
com.sun.ts.tests.jaspic.tssv.config.TSAuthConfigFactory

Adding this property to the java.security file forces your implementation to load the test
suite’s AuthConfigFactory.

5. Copies the TS_HOME/lib/tssv.jar file to your implementation instance library directory.
The tssv.jar file includes the class files necessary to load TSAuthConfigFactory and related
classes.

6. Copies the TSSV configuration files (ProviderConfiguration.xml, provider-configuration.xsd) to
your implementation instance library directory.

7. Deploys the JASPIC file processor, com/sun/ts/tests/jaspic/util/jaspic_util_web.war.

5. If necessary, provide your own implementations of the porting package interface provided with the
JASPIC TCK.
TSURLInterface.java obtains URL strings for web resources in an implementation-specific manner.
API documentation for the TSURLInterface.java porting package interface is available in the
documentation bundle in the docs/api directory.

4.2 Configuring Your Environment to Repackage and
Run the TCK Against the Vendor Implementation
After configuring your environment as described in this section, continue with the instructions in
Section 4.4, "Using the JavaTest Harness Software."

4.2 Configuring Your Environment to Repackage and Run the TCK Against the Vendor Implementation

DRAFT TCK User’s Guide for Technology Implementors 27

#GBFUY



In these instructions, variables in angle brackets need to be expanded for each
platform. For example, <TS_HOME> becomes $TS_HOME on Solaris/Linux and %TS_HOME% on
Windows. In addition, the forward slashes (/) used in all of the examples need to be
replaced with backslashes (\) for Windows. Finally, be sure to use the appropriate
separator for your operating system when specifying multiple path entries (; on
Windows, : on UNIX/Linux).

On Windows, you must escape any backslashes with an extra backslash in path
separators used in any of the following properties, or use forward slashes as a path
separator instead.

With the Authentication TCK, vendors can specify the level of Authentication support with which they
comply. For example, a vendor may be compliant with the Servlet Profile, the SOAP Profile, or another
(possibly unknown) profile. If a vendor chooses not to pursue compliance with any profile, they have
an option of meeting something called baseline compliance. This is the level of compliance that exists
regardless of which profile is being tested.

When a vendor is vying for compliance against no profile and is trying to get baseline compliance
certification only, they have to implement a porting package (for example, a customvehicle) and pass
the baseline tests that are in the TS_HOME/src/com/sun/ts/tests/jaspic/spi/baseline directory.

The sections that follow explain how to create a custom vehicle and how to replace the default vehicle
with a custom vehicle.

4.2.1 To Create a Custom Vehicle

A custom vehicle must be created and used when Authentication profile tests are run in an
environment that does not contain a Web server. If your Authentication profile implementation
includes a Web server, you do not need to implement your own custom vehicle.

The custom vehicle exists, in stubbed out form, and must be implemented in a way that provides a
wrapper in which Authentication tests can execute. The default jaspicservlet vehicle is an example of
a vehicle that wraps and executes tests in a Servlet container. The jaspicservlet vehicle source can be
used a reference to help you implement your own custom vehicle. The jaspicservlet vehicle is in the
src/com/sun/ts/tests/common/vehicle/jaspicservlet directory.

1. Use the stubbed-out customvehicle in the src/com/sun/ts/tests/common/vehicle/customvehicle

directory as your starting point.

2. Modify the CustomVehicleRunner class, using other vehicles as references.
The bin/xml/ts.vehicles.xml file includes a stubbed-out section for the customvehicle, which you
can modify to build you own customvehicle.

3. Build the customvehicle you created.

4. Modify the src/vehicle.properties file so that it refers to customvehicle instead of jaspicservlet.

4.2 Configuring Your Environment to Repackage and Run the TCK Against the Vendor Implementation

28 TCK User’s Guide for Technology Implementors DRAFT

The vehicle.properties file is used during runtime to indicate in which vehicle the tests should be
executed.

5. Remove or rename the src/testsuite.jtd file.
This allows the test harness to identify tests to be run in your customvehicle.

4.2.2 To Replace the Default Vehicle With a Custom Vehicle

If your Authentication server does not have web support, you will need to create your own vehicle. A
vehicle is a wrapper that supports running tests in different server-side containers, such as servlet, JSP,
and so on. The Authentication TCK provides a default vehicle, jaspicservlet, which supports running
the TCK tests in a Authentication runtime that has a Servlet container. To support running tests in an
environment other than a Servlet container, you need to implement your own vehicle, effectively
replacing the default vehicle, jaspicservlet.

This TCK was designed so you could use jaspicservlet as a template for creating your own vehicle. The
jaspicservlet vehicle is used to contain and execute your client-side tests in the connector runtime.

The jaspicservlet vehicle is located in the
<TS_HOME>/src/com/sun/ts/tests/common/vehicle/jaspicservlet directory.

To run the tests in a vehicle other than jaspicservlet, you need to create a custom vehicle named
customvehicle. See Section 4.2.1, "To Create a Custom Vehicle," for more information on this topic.

4.3 Publishing the Test Applications
Not needed for the Authentication TCK.

4.4 Custom Configuration Handlers
Configuration handlers are used to configure and unconfigure a Authentication 1.1 implementation
during the certification process. These are similar to deployment handlers but used for configuration.
A configuration handler is an Ant build file that contains at least the required targets listed below:

• config.vi - to configure the vendor implementation

• clean.vi - to unconfigure the vendor implementation

These targets are called from the <TS_HOME>/bin/build.xml file and call down into the implementation-
specific configuration handlers.

4.3 Publishing the Test Applications

DRAFT TCK User’s Guide for Technology Implementors 29

#CBDCAIEE

To provide your own configuration handler, create a config.vi.xml file with the necessary
configuration steps for your implementation and place the file under the
<TS_HOME>/bin/xml/impl/<your_impl> directory.

For more information, you may wish to view <TS_HOME>/bin/xml/impl/glassfish/config.vi.xml, the
configuration file for Eclipse EE4J Jakarta EE 8 Compatible Implementation, Eclipse GlassFish.

4.5 Custom Deployment Handlers
Deployment handlers are used to deploy and undeploy the WAR files that contain the tests to be run
during the certification process. A deployment handler is an Ant build file that contains at least the
required targets listed in the table below.

The Authentication TCK provides these deployment handlers:

• <TS_HOME>/bin/xml/impl/none/deploy.xml

• <TS_HOME>/bin/xml/impl/glassfish/deploy.xml

• <TS_HOME>/bin/xml/impl/tomcat/deploy.xml

The deploy.xml files in each of these directories are used to control deployment to a specific container
(no deployment, deployment to the Eclipse GlassFish Web container, deployment to the Tomcat Web
container) denoted by the name of the directory in which each deploy.xml file resides. The primary
build.xml file in the <TS_HOME>/bin directory has a target to invoke any of the required targets (-deploy,
-undeploy, -deploy.all, -undeploy.all).

4.5.1 To Create a Custom Deployment Handler

To deploy tests to another Authentication implementation, you must create a custom handler.

1. Create a new directory in the <TS_HOME>/bin/xml/impl directory tree. For example, create the
<TS_HOME>/bin/xml/impl/my_deployment_handler directory. Replace my_deployment_handler with the
value of the impl.vi property that you set in Step 5 of the configuration procedure described in
Section 4.2, "Configuring Your Environment to Repackage and Run the TCK Against the Vendor
Implementation".

2. Copy the deploy.xml file from the <TS_HOME>/bin/xml/impl/none directory to the directory that you
created.

3. Modify the required targets in the deploy.xml file. This is what the deploy.xml file for the "none"
deployment handler looks like.

4.5 Custom Deployment Handlers

30 TCK User’s Guide for Technology Implementors DRAFT

<project name="No-op Deployment" default="deploy">
 <!-- No-op deployment target -->
 <target name="-deploy">
 <echo message="No deploy target implemented for this deliverable"/>
 </target>
 <target name="-undeploy">
 <echo message="No undeploy target implemented for this deliverable"/>
 </target>
 <target name="-deploy.all">
 <echo message="No deploy target implemented for this deliverable"/>
 </target>
 <target name="-undeploy.all">
 <echo message="No undeploy target implemented for this deliverable"/>
 </target>
</project>

Although this example just echoes messages, it does include the four required Ant targets (-deploy,
-undeploy, -deploy.all, -undeploy.all) that your custom deploy.xml file must contain. With this as
your starting point, look at the required targets in the deploy.xml files in the Tomcat and Eclipse
Glassfish directories for guidance as you create the same targets for the Web container in which
you will run your implementation of Authentication.

The following Ant targets can be called from anywhere under the <TS_HOME>/src directory:

• deploy

• undeploy

• deploy.all

• undeploy.all

The deploy.all and undeploy.all targets can also be called from the <TS_HOME>/bin directory.


The targets in the deploy.xml file are never called directly. They are called indirectly
by the targets listed above.

4.6 Using the JavaTest Harness Software
There are two general ways to run the Authentication TCK test suite using the JavaTest harness
software:

• Through the JavaTest GUI; if using this method, please continue on to Section 4.7, "Using the
JavaTest Harness Configuration GUI."

• In JavaTest batch mode, from the command line in your shell environment; if using this method,

4.6 Using the JavaTest Harness Software

DRAFT TCK User’s Guide for Technology Implementors 31

#GBFWG
#GBFWG

please proceed directly to Chapter 5, "Executing Tests."

4.7 Using the JavaTest Harness Configuration GUI
You can use the JavaTest harness GUI to modify general test settings and to quickly get started with the
default Authentication TCK test environment. This section covers the following topics:

• Configuration GUI Overview

• Starting the Configuration GUI

• To Configure the JavaTest Harness to Run the Authentication TCK Tests

• Modifying the Default Test Configuration


It is only necessary to proceed with this section if you want to run the JavaTest
harness in GUI mode. If you plan to run the JavaTest harness in command-line mode,
skip the remainder of this chapter, and continue with Chapter 5, "Executing Tests."

4.7.1 Configuration GUI Overview

In order for the JavaTest harness to execute the test suite, it requires information about how your
computing environment is configured. The JavaTest harness requires two types of configuration
information:

• Test environment: This is data used by the tests. For example, the path to the Java runtime, how to
start the product being tested, network resources, and other information required by the tests in
order to run. This information does not change frequently and usually stays constant from test run
to test run.

• Test parameters: This is information used by the JavaTest harness to run the tests. Test parameters
are values used by the JavaTest harness that determine which tests in the test suite are run, how
the tests should be run, and where the test reports are stored. This information often changes from
test run to test run.

The first time you run the JavaTest harness software, you are asked to specify the test suite and work
directory that you want to use. (These parameters can be changed later from within the JavaTest
harness GUI.)

Once the JavaTest harness GUI is displayed, whenever you choose Start, then Run Tests to begin a test
run, the JavaTest harness determines whether all of the required configuration information has been
supplied:

• If the test environment and parameters have been completely configured, the test run starts

4.7 Using the JavaTest Harness Configuration GUI

32 TCK User’s Guide for Technology Implementors DRAFT

using.html#GBFWO
#GBFVA
#GBFVD
#GBFVX
#GBFUU
using.html#GBFWO

immediately.

• If any required configuration information is missing, the configuration editor displays a series of
questions asking you the necessary information. This is called the configuration interview. When
you have entered the configuration data, you are asked if you wish to proceed with running the
test.

4.7.2 Starting the Configuration GUI

Before you start the JavaTest harness software, you must have a valid test suite and Java SE 8 installed
on your system.

The Authentication TCK includes an Ant script that is used to execute the JavaTest harness from the
<TS_HOME> directory. Using this Ant script to start the JavaTest harness is part of the procedure
described in Section 4.7.3, "To Configure the JavaTest Harness to Run the TCK Tests."

When you execute the JavaTest harness software for the first time, the JavaTest harness displays a
Welcome dialog box that guides you through the initial startup configuration.

• If it is able to open a test suite, the JavaTest harness displays a Welcome to JavaTest dialog box that
guides you through the process of either opening an existing work directory or creating a new
work directory as described in the JavaTest online help.

• If the JavaTest harness is unable to open a test suite, it displays a Welcome to JavaTest dialog box
that guides you through the process of opening both a test suite and a work directory as described
in the JavaTest documentation.

After you specify a work directory, you can use the Test Manager to configure and run tests as
described in Section 4.7.3, "To Configure the JavaTest Harness to Run the TCK Tests."

4.7.3 To Configure the JavaTest Harness to Run the TCK Tests

The answers you give to some of the configuration interview questions are specific to your site. For
example, the name of the host on which the JavaTest harness is running. Other configuration
parameters can be set however you wish. For example, where you want test report files to be stored.

Note that you only need to complete all these steps the first time you start the JavaTest test harness.
After you complete these steps, you can either run all of the tests by completing the steps in Section 5.1,
"Starting JavaTest," or run a subset of the tests by completing the steps in Section 5.2, "Running a
Subset of the Tests."

1. Change to the <TS_HOME>/bin directory and start the JavaTest test harness:
cd <TS_HOME>/bin

ant gui

4.7 Using the JavaTest Harness Configuration GUI

DRAFT TCK User’s Guide for Technology Implementors 33

#GBFVX
#GBFVX
using.html#GBFUZ
using.html#GBFUZ
using.html#GBFWM
using.html#GBFWM

2. From the File menu, click Open Quick Start Wizard.
The Welcome screen displays.

3. Select Start a new test run, and then click Next.
You are prompted to create a new configuration or use a configuration template.

4. Select Create a new configuration, and then click Next.
You are prompted to select a test suite.

5. Accept the default suite (<TS_HOME>/src), and then click Next.
You are prompted to specify a work directory to use to store your test results.

6. Type a work directory name or use the Browse button to select a work directory, and then click
Next.
You are prompted to start the configuration editor or start a test run. At this point, the
Authentication TCK is configured to run the default test suite.

7. Deselect the Start the configuration editor option, and then click Finish.

8. Click Run Tests, then click Start.
The JavaTest harness starts running the tests.

9. To reconfigure the JavaTest test harness, do one of the following:

◦ Click Configuration, then click New Configuration.

◦ Click Configuration, then click Change Configuration.

10. Click Report, and then click Create Report.

11. Specify the directory in which the JavaTest test harness will write the report, and then click OK.
A report is created, and you are asked whether you want to view it.

12. Click Yes to view the report.

4.7.4 Modifying the Default Test Configuration

The JavaTest GUI enables you to configure numerous test options. These options are divided into two
general dialog box groups:

• Group 1: Available from the JavaTest Configure/Change Configuration submenus, the following
options are displayed in a tabbed dialog box:

◦ Tests to Run

◦ Exclude List

◦ Keywords

◦ Prior Status

◦ Test Environment

◦ Concurrency

4.7 Using the JavaTest Harness Configuration GUI

34 TCK User’s Guide for Technology Implementors DRAFT

◦ Timeout Factor

• Group 2: Available from the JavaTest Configure/Change Configuration/Other Values submenu, or
by pressing Ctrl+E, the following options are displayed in a paged dialog box:

◦ Environment Files

◦ Test Environment

◦ Specify Tests to Run

◦ Specify an Exclude List

Note that there is some overlap between the functions in these two dialog boxes; for those functions
use the dialog box that is most convenient for you. Please refer to the JavaTest Harness documentation
or the online help for complete information about these various options.

4.7 Using the JavaTest Harness Configuration GUI

DRAFT TCK User’s Guide for Technology Implementors 35

5 Executing Tests
The Authentication TCK uses the JavaTest harness to execute the tests in the test suite. For detailed
instructions that explain how to run and use JavaTest, see the JavaTest User’s Guide and Reference in
the documentation bundle.

This chapter includes the following topics:

• Starting JavaTest

• Running a Subset of the Tests

• Running the TCK Against your selected CI

• Running the TCK Against a Vendor’s Implementation

• Test Reports


The instructions in this chapter assume that you have installed and configured your
test environment as described in Chapter 3, "Installation," and Chapter 4, "Setup and
Configuration,", respectively.

5.1 Starting JavaTest
There are two general ways to run the Authentication TCK using the JavaTest harness software:

• Through the JavaTest GUI

• From the command line in your shell environment


The ant command referenced in the following two procedures and elsewhere in this
guide is the Apache Ant build tool, which will need to be downloaded separately. The
build.xml file in <TS_HOME>/bin contains the various Ant targets for the Authentication
TCK test suite.

5.1.1 To Start JavaTest in GUI Mode

Execute the following commands:

cd <TS_HOME>/bin
ant gui

5.1 Starting JavaTest

36 TCK User’s Guide for Technology Implementors DRAFT

#GBFUZ
#GBFWM
#GCLRR
#GCLRZ
#GBFVK
install.html#GBFTP
config.html#GBFVV
config.html#GBFVV

5.1.2 To Start JavaTest in Command-Line Mode

1. Change to the directory <TS_HOME>/src/com/sun/ts/tests/jaspic.

2. Start JavaTest using the following command:

ant runclient

Example 5-1 Authentication TCK Signature Tests

To run the Authentication TCK signature tests, enter the following commands:

cd <TS_HOME>/src/com/sun/ts/tests/signaturetest/jaspic
ant runclient

Example 5-2 Authentication TCK Mandatory Tests

To run the Authentication TCK mandatory tests, enter the following commands:

cd <TS_HOME>/src/com/sun/ts/tests/jaspic
ant -Dkeywords="jaspic_servlet | jaspic_baseline" runclient

Example 5-3 Authentication TCK Optional Tests

To run the Authentication optional TCK tests, enter the following commands:

cd <TS_HOME>/src/com/sun/ts/tests/jaspic
ant -Dkeywords="jaspic_soap_optional" clean build package runclient

A Authentication implementation can implement one or more of the profiles specified in the
specification. To accommodate this, the Authentication TCK tests use the JavaTest keyword feature,
which enables vendors to run tests that are relevant to their implementation.

For example, a vendor who implements only a servlet profile can run all tests specific to the servlet
profile.

ant -Dkeywords="jaspic_core | jaspic_servlet" runclient

As another example, for running tests relevant to a soap profile, you could use the following command:

ant -Dkeywords="jaspic_core | jaspic_soap" runclient

5.1 Starting JavaTest

DRAFT TCK User’s Guide for Technology Implementors 37

The keywords that can be used are:

• jaspic_core

• jaspic_servlet

• jaspic_soap

5.2 Running a Subset of the Tests
Use the following modes to run a subset of the tests:

• Section 5.2.1, "To Run a Subset of Tests in GUI Mode"

• Section 5.2.2, "To Run a Subset of Tests in Command-Line Mode"

• Section 5.2.3, "To Run a Subset of Tests in Batch Mode Based on Prior Result Status"

5.2.1 To Run a Subset of Tests in GUI Mode

1. From the JavaTest main menu, click Configure, then click Change Configuration, and then click
Tests to Run.
The tabbed Configuration Editor dialog box is displayed.

2. Click Specify from the option list on the left.

3. Select the tests you want to run from the displayed test tree, and then click Done.
You can select entire branches of the test tree, or use Ctrl+Click or Shift+Click to select multiple
tests or ranges of tests, respectively, or select just a single test.

4. Click Save File.

5. Click Run Tests, and then click Start to run the tests you selected.
Alternatively, you can right-click the test you want from the test tree in the left section of the
JavaTest main window, and choose Execute These Tests from the menu.

6. Click Report, and then click Create Report.

7. Specify the directory in which the JavaTest test harness will write the report, and then click OK
A report is created, and you are asked whether you want to view it.

8. Click Yes to view the report.

5.2.2 To Run a Subset of Tests in Command-Line Mode

1. Change to the directory containing the tests you want to run.

2. Start the test run by executing the following command:

5.2 Running a Subset of the Tests

38 TCK User’s Guide for Technology Implementors DRAFT

#GBFVT
#GBFWK
#GBFVL

ant runclient

The tests in the directory and its subdirectories are run.

5.2.3 To Run a Subset of Tests in Batch Mode Based on Prior Result Status

You can run certain tests in batch mode based on the test’s prior run status by specifying the
priorStatus system property when invoking ant

Invoke ant with the priorStatus property.

The accepted values for the priorStatus property are any combination of the following:

• fail

• pass

• error

• notRun

For example, you could run all the Authentication tests with a status of failed and error by invoking the
following commands:

ant -DpriorStatus="fail,error" runclient

Note that multiple priorStatus values must be separated by commas.

5.3 Running the TCK Against another CI
Some test scenarios are designed to ensure that the configuration and deployment of all the prebuilt
Authentication TCK tests against one Compatible Implementation are successful operating with other
compatible implementations, and that the TCK is ready for compatibility testing against the Vendor
and Compatible Implementations.

1. Verify that you have followed the configuration instructions in Section 4.1, "Configuring Your
Environment to Run the TCK Against the Compatible Implementation."

2. If required, verify that you have completed the steps in Section 4.3.2, "Deploying the Prebuilt
Archives."

3. Run the tests, as described in Section 5.1, "Starting JavaTest," and, if desired, Section 5.2, "Running a
Subset of the Tests."

5.3 Running the TCK Against another CI

DRAFT TCK User’s Guide for Technology Implementors 39

config.html#GBFVU
config.html#GBFVU
config.html#GCLIW
config.html#GCLIW
#GBFUZ
#GBFWM
#GBFWM

5.4 Running the TCK Against a Vendor’s Implementation
This test scenario is one of the compatibility test phases that all Vendors must pass.

1. Verify that you have followed the configuration instructions in Section 4.2, "Configuring Your
Environment to Repackage and Run the TCK Against the Vendor Implementation."

2. If required, verify that you have completed the steps in Section 4.3.3, "Deploying the Test
Applications Against the Vendor Implementation."

3. Run the tests, as described in Section 5.1, "Starting JavaTest," and, if desired, Section 5.2, "Running a
Subset of the Tests."

5.5 Test Reports
A set of report files is created for every test run. These report files can be found in the report directory
you specify. After a test run is completed, the JavaTest harness writes HTML reports for the test run.
You can view these files in the JavaTest ReportBrowser when running in GUI mode, or in the web
browser of your choice outside the JavaTest interface.

To see all of the HTML report files, enter the URL of the report.html file. This file is the root file that
links to all of the other HTML reports.

The JavaTest harness also creates a summary.txt file in the report directory that you can open in any
text editor. The summary.txt file contains a list of all tests that were run, their test results, and their
status messages.

5.5.1 Creating Test Reports

Use the following modes to create test reports:

• Section 5.5.1.1, "To Create a Test Report in GUI Mode"

• Section 5.5.1.2, "To Create a Test Report in Command-Line Mode"

5.5.1.1 To Create a Test Report in GUI Mode

1. From the JavaTest main menu, click Report, then click Create Report.
You are prompted to specify a directory to use for your test reports.

5.4 Running the TCK Against a Vendor’s Implementation

40 TCK User’s Guide for Technology Implementors DRAFT

config.html#GCLHU
config.html#GCLHU
config.html#GCLIL
config.html#GCLIL
#GBFUZ
#GBFWM
#GBFWM
#GBFVH
#GBFVC

2. Specify the directory you want to use for your reports, and then click OK.
Use the Filter list to specify whether you want to generate reports for the current configuration, all
tests, or a custom set of tests.
You are asked whether you want to view report now.

3. Click Yes to display the new report in the JavaTest ReportBrowser.

5.5.1.2 To Create a Test Report in Command-Line Mode

1. Specify where you want to create the test report.

1. To specify the report directory from the command line at runtime, use:

ant -Dreport.dir="report_dir"

Reports are written for the last test run to the directory you specify.

2. To specify the default report directory, set the report.dir property in <TS_HOME>/bin/ts.jte.
For example:

report.dir="/home/josephine/reports"

3. To disable reporting, set the report.dir property to "none", either on the command line or in
<TS_HOME>/bin/ts.jte.
For example:

ant -Dreport.dir="none"

5.5.2 Viewing an Existing Test Report

Use the following modes to view an existing test report:

• Section 5.5.2.1, "To View an Existing Report in GUI Mode"

• Section 5.5.2.2, "To View an Existing Report in Command-Line Mode"

5.5.2.1 To View an Existing Report in GUI Mode

1. From the JavaTest main menu, click Report, then click Open Report.

5.5 Test Reports

DRAFT TCK User’s Guide for Technology Implementors 41

#GBFVO
#GBFWB

You are prompted to specify the directory containing the report you want to open.

2. Select the report directory you want to open, and then click Open.
The selected report set is opened in the JavaTest ReportBrowser.

5.5.2.2 To View an Existing Report in Command-Line Mode

Use the Web browser of your choice to view the report.html file in the report directory you specified
from the command line or in <TS_HOME>/bin/ts.jte.

5.5 Test Reports

42 TCK User’s Guide for Technology Implementors DRAFT

6 Debugging Test Problems
There are a number of reasons that tests can fail to execute properly. This chapter provides some
approaches for dealing with these failures. Please note that most of these suggestions are only relevant
when running the test harness in GUI mode.

This chapter includes the following topics:

• Overview

• Test Tree

• Folder Information

• Test Information

• Report Files

• Configuration Failures

6.1 Overview
The goal of a test run is for all tests in the test suite that are not filtered out to have passing results. If
the root test suite folder contains tests with errors or failing results, you must troubleshoot and correct
the cause to satisfactorily complete the test run.

• Errors: Tests with errors could not be executed by the JavaTest harness. These errors usually occur
because the test environment is not properly configured.

• Failures: Tests that fail were executed but had failing results.

The Test Manager GUI provides you with a number of tools for effectively troubleshooting a test run.
See the JavaTest User’s Guide and JavaTest online help for detailed descriptions of the tools described
in this chapter. Ant test execution tasks provide command-line users with immediate test execution
feedback to the display. Available JTR report files and log files can also help command-line users
troubleshoot test run problems.

For every test run, the JavaTest harness creates a set of report files in the reports directory, which you
specified by setting the report.dir property in the <TS_HOME>/bin/ts.jte file. The report files contain
information about the test description, environment, messages, properties used by the test, status of
the test, and test result. After a test run is completed, the JavaTest harness writes HTML reports for the
test run. You can view these files in the JavaTest ReportBrowser when running in GUI mode, or in the
Web browser of your choice outside the JavaTest interface. To see all of the HTML report files, enter
the URL of the report.html file. This file is the root file that links to all of the other HTML reports.

The JavaTest harness also creates a summary.txt file in the report directory that you can open in any
text editor. The summary.txt file contains a list of all tests that were run, their test results, and their

6.1 Overview

DRAFT TCK User’s Guide for Technology Implementors 43

#GBFYP
#GBFVF
#GBFWI
#GBFVP
#GBFVZ
#GBFYF

status messages.

The work directory, which you specified by setting the work.dir property in the <TS_HOME>/bin/ts.jte
file, contains several files that were deposited there during test execution: harness.trace, log.txt,
lastRun.txt, and testsuite. Most of these files provide information about the harness and environment
in which the tests were executed.


You can set harness.log.traceflag=true in <TS_HOME>/bin/ts.jte to get more debugging
information.

If a large number of tests failed, you should read Configuration Failures to see if a configuration issue
is the cause of the failures.

6.2 Test Tree
Use the test tree in the JavaTest GUI to identify specific folders and tests that had errors or failing
results. Color codes are used to indicate status as follows:

• Green: Passed

• Blue: Test Error

• Red: Failed to pass test

• White: Test not run

• Gray: Test filtered out (not run)

6.3 Folder Information
Click a folder in the test tree in the JavaTest GUI to display its tabs.

Choose the Error and the Failed tabs to view the lists of all tests in and under a folder that were not
successfully run. You can double-click a test in the lists to view its test information.

6.4 Test Information
To display information about a test in the JavaTest GUI, click its icon in the test tree or double-click its
name in a folder status tab. The tab contains detailed information about the test run and, at the bottom
of the window, a brief status message identifying the type of failure or error. This message may be
sufficient for you to identify the cause of the error or failure.

6.2 Test Tree

44 TCK User’s Guide for Technology Implementors DRAFT

#GBFYF

If you need more information to identify the cause of the error or failure, use the following tabs listed
in order of importance:

• Test Run Messages contains a Message list and a Message section that display the messages
produced during the test run.

• Test Run Details contains a two-column table of name/value pairs recorded when the test was run.

• Configuration contains a two-column table of the test environment name/value pairs derived from
the configuration data actually used to run the test.


You can set harness.log.traceflag=true in <TS_HOME>/bin/ts.jte to get more debugging
information.

6.5 Report Files
Report files are another good source of troubleshooting information. You may view the individual test
results of a batch run in the JavaTest Summary window, but there are also a wide range of HTML
report files that you can view in the JavaTest ReportBrowser or in the external browser or your choice
following a test run. See Section 5.5, "Test Reports," for more information.

6.6 Configuration Failures
Configuration failures are easily recognized because many tests fail the same way. When all your tests
begin to fail, you may want to stop the run immediately and start viewing individual test output.
However, in the case of full-scale launching problems where no tests are actually processed, report
files are usually not created (though sometimes a small harness.trace file in the report directory is
written).

6.5 Report Files

DRAFT TCK User’s Guide for Technology Implementors 45

using.html#GBFVK

A Frequently Asked Questions
This appendix contains the following questions.

• Where do I start to debug a test failure?

• How do I restart a crashed test run?

• What would cause tests be added to the exclude list?

A.1 Where do I start to debug a test failure?
From the JavaTest GUI, you can view recently run tests using the Test Results Summary, by selecting
the red Failed tab or the blue Error tab. See Chapter 6, "Debugging Test Problems," for more
information.

A.2 How do I restart a crashed test run?
If you need to restart a test run, you can figure out which test crashed the test suite by looking at the
harness.trace file. The harness.trace file is in the report directory that you supplied to the JavaTest GUI
or parameter file. Examine this trace file, then change the JavaTest GUI initial files to that location or to
a directory location below that file, and restart. This will overwrite only .jtr files that you rerun. As
long as you do not change the value of the GUI work directory, you can continue testing and then later
compile a complete report to include results from all such partial runs.

A.3 What would cause tests be added to the exclude list?
The JavaTest exclude file (<TS_HOME>/bin/ts.jtx) contains all tests that are not required to be run. The
following is a list of reasons for a test to be included in the Exclude List:

• An error in a reference implementation that does not allow the test to execute properly has been
discovered.

• An error in the specification that was used as the basis of the test has been discovered.

• An error in the test has been discovered.

A.1 Where do I start to debug a test failure?

46 TCK User’s Guide for Technology Implementors DRAFT

#GBFYQ
#GBFYR
#GBFWU
debug.html#GBFUV

Appendix B is not used for the Authentication TCK.

A.3 What would cause tests be added to the exclude list?

DRAFT TCK User’s Guide for Technology Implementors 47

	TCK User’s Guide for Technology Implementors
	Table of Contents
	Eclipse Foundation
	Preface
	Who Should Use This Book
	Before You Read This Book
	Typographic Conventions
	Shell Prompts in Command Examples

	1 Introduction
	1.1 Compatibility Testing
	1.2 About the TCK
	1.3 Getting Started With the TCK

	2 Procedure for Certification
	2.1 Certification Overview
	2.2 Compatibility Requirements
	2.3 Test Appeals Process
	2.4 Specifications for Jakarta Authentication
	2.5 Libraries for Jakarta Authentication

	3 Installation
	3.1 Obtaining a Compatible Implementation
	3.2 Installing the Software

	4 Setup and Configuration
	4.1 Configuring Your Environment to Run the TCK Against the Reference Implementation
	4.2 Configuring Your Environment to Repackage and Run the TCK Against the Vendor Implementation
	4.3 Publishing the Test Applications
	4.4 Custom Configuration Handlers
	4.5 Custom Deployment Handlers
	4.6 Using the JavaTest Harness Software
	4.7 Using the JavaTest Harness Configuration GUI

	5 Executing Tests
	5.1 Starting JavaTest
	5.2 Running a Subset of the Tests
	5.3 Running the TCK Against another CI
	5.4 Running the TCK Against a Vendor’s Implementation
	5.5 Test Reports

	6 Debugging Test Problems
	6.1 Overview
	6.2 Test Tree
	6.3 Folder Information
	6.4 Test Information
	6.5 Report Files
	6.6 Configuration Failures

	A Frequently Asked Questions
	A.1 Where do I start to debug a test failure?
	A.2 How do I restart a crashed test run?
	A.3 What would cause tests be added to the exclude list?

