
OCL Documentation

Eclipse OCL 2020-06 (6.12.0) 1

OCL Documentation
Christian Damus, Adolfo Sánchez-Barbudo

Herrera, Axel Uhl, Edward Willink and contributors

Copyright 2002 - 2020

Eclipse OCL 2020-06 (6.12.0) ii

1. Overview and Getting Started ... 1
1.1. What is OCL? .. 1
1.2. How Does It Work? .. 1

1.2.1. Editing ... 1
1.2.2. Execution .. 1
1.2.3. Debugging .. 2
1.2.4. Testing ... 2

1.3. Eclipse OCL is Extensible .. 2
1.4. Who Uses OCL and Eclipse OCL? .. 2
1.5. Who is Behind Eclipse OCL? ... 3
1.6. Getting Started ... 3

2. Users Guide .. 5
2.1. The two Eclipse OCLs ... 5

2.1.1. The Classic Eclipse OCL metamodels .. 5
2.1.2. The Unified or Pivot Eclipse OCL metamodel ... 5
2.1.3. The transition .. 6
2.1.4. Migration .. 7
2.1.5. APIs .. 8

2.2. The Essential OCL Language .. 9
2.2.1. Syntax .. 9

2.3. The OCLinEcore Language ... 19
2.3.1. Syntax .. 19
2.3.2. Limitations .. 31

2.4. The Complete OCL Language ... 31
2.4.1. Syntax .. 31

2.5. The OCL Standard Library Language ... 37
2.5.1. Syntax .. 37

2.6. Editors .. 41
2.6.1. Syntax coloring .. 41
2.6.2. Validation ... 42
2.6.3. Hover Text .. 42
2.6.4. Content Assist .. 42
2.6.5. Code Templates .. 42
2.6.6. Open Declaration .. 42

2.7. OCL Nature and Builder Auto-Validation .. 43
2.7.1. Configuring the OCL Nature and Builder .. 43
2.7.2. Ecore and UML Auto-Validation ... 43
2.7.3. Building on pre-Photon / 2018 releases ... 44

2.8. Console ... 44
2.8.1. Context Object Selection .. 45
2.8.2. Editing .. 45
2.8.3. Editor Keys ... 45
2.8.4. Results .. 45
2.8.5. Tool Bar ... 45

2.9. Validity View (new in Luna) ... 46
2.9.1. View Tool Bar ... 47
2.9.2. Model Elements Pane .. 48
2.9.3. Metamodel Constraints Pane ... 49
2.9.4. Constraint Locators ... 50

2.10. Debugger (new in Luna) ... 51
2.10.1. Launching .. 51
2.10.2. Stepping .. 53
2.10.3. Variables View ... 54
2.10.4. Breakpoints View .. 54
2.10.5. Outline View .. 54

2.11. OCL Integration .. 54
2.11.1. OCL execution in Ecore / EMF Delegates .. 54
2.11.2. Custom Validation Messages ... 54

OCL Documentation

Eclipse OCL 2020-06 (6.12.0) iii

2.11.3. CompleteOCL Validation ... 55
2.11.4. OCLinEcore for Xtext Validation ... 56
2.11.5. Complete OCL for Xtext Validation ... 56

2.12. OCL in UML (using Papyrus) ... 56
2.12.1. UML Integration ... 56
2.12.2. Class Diagram .. 57
2.12.3. State Machine Diagram .. 61

2.13. OCL Constraint Examples for UML (using Papyrus) .. 62
2.13.1. Model Constraints ... 63
2.13.2. Profile Constraints ... 66

2.14. User Interface ... 70
2.14.1. Project Property Pages ... 70
2.14.2. Workspace Preference Pages ... 71
2.14.3. Overall Options .. 71
2.14.4. Ecore and UML Options .. 72
2.14.5. UML Options ... 73
2.14.6. Model Registry ... 73
2.14.7. Syntax Coloring .. 73
2.14.8. Editor Templates ... 73
2.14.9. OCLinEcore Options ... 74

3. The OCL Standard Library .. 75
3.1. Precedences .. 75
3.2. Bag(T) ... 75
3.3. Boolean ... 76
3.4. Class .. 78
3.5. Collection(T) ... 78
3.6. Enumeration ... 81
3.7. EnumerationLiteral ... 81
3.8. Integer ... 81
3.9. Map(K, V) .. 82
3.10. OclAny ... 83
3.11. OclComparable ... 84
3.12. OclElement ... 85
3.13. OclEnumeration ... 86
3.14. OclInvalid ... 86
3.15. OclLambda ... 87
3.16. OclMessage ... 87
3.17. OclSelf ... 87
3.18. OclState ... 87
3.19. OclStereotype ... 87
3.20. OclSummable ... 88
3.21. OclTuple ... 88
3.22. OclType ... 88
3.23. OclVoid ... 88
3.24. OrderedCollection(T) ... 89
3.25. OrderedSet(T) ... 89
3.26. Real ... 90
3.27. Sequence(T) ... 91
3.28. Set(T) ... 92
3.29. State ... 93
3.30. String ... 93
3.31. Type ... 95
3.32. UniqueCollection(T) ... 95
3.33. UnlimitedNatural ... 96

4. Tutorials ... 97
4.1. OCLinEcore tutorial .. 97

4.1.1. Overview ... 97
4.1.2. References ... 97

OCL Documentation

Eclipse OCL 2020-06 (6.12.0) iv

4.1.3. Installing the Eclipse OCL Examples .. 97
4.1.4. Troubleshooting .. 97
4.1.5. Using the OCLinEcore text editor for Ecore ... 98
4.1.6. Create a Dynamic Model Instance .. 102
4.1.7. Enrich the meta-model with OCL ... 105
4.1.8. The OCL Console ... 106
4.1.9. Helper Features and Operations ... 107
4.1.10. Generating Java Code .. 110
4.1.11. Summary ... 114

4.2. Complete OCL tutorial ... 114
4.2.1. Overview .. 114
4.2.2. Complete OCL Utility .. 114
4.2.3. Load Complete OCL Tutorial Example Project ... 114
4.2.4. Complete OCL Language Overview ... 116
4.2.5. OCL->Load Document Menu Action ... 119
4.2.6. Example Complete OCL complements for Ecore ... 121
4.2.7. Validating Ecore with additional Complete OCL ... 122
4.2.8. Editing the Complete OCL ... 123
4.2.9. Example Complete OCL complements for UML ... 123
4.2.10. Example Complete OCL complements for Xtext 124
4.2.11. Complete OCL Editor .. 125
4.2.12. Royal and Loyal Example ... 125
4.2.13. Summary ... 125

4.3. Safe navigation tutorial ... 125
4.3.1. Overview .. 125
4.3.2. References ... 125
4.3.3. Evaluation hazards .. 125
4.3.4. Enable Safe Navigation Diagnosis .. 126
4.3.5. Safe Navigation Diagnosis .. 126
4.3.6. Safe Navigation Operators .. 127
4.3.7. Null-free Collections .. 127
4.3.8. Declaring Null-free Collections in Ecore ... 128
4.3.9. Declaring Null-free Collections in UML .. 128

4.4. Code Generation tutorial ... 129
4.4.1. Load OCLinEcore Tutorial Example Project ... 129
4.4.2. Direct code .. 129
4.4.3. Using a GenAnnotation .. 129

4.5. Debugger tutorial ... 130
4.5.1. Load OCLinEcore Tutorial Example Project ... 130
4.5.2. The OCL Debugger ... 130
4.5.3. Very Simple Debug session .. 131
4.5.4. Debugging a Validation failure .. 134
4.5.5. Debugging Complete OCL validation failure .. 137
4.5.6. Console experiments .. 138
4.5.7. Longer range stepping .. 138
4.5.8. Break points ... 139

4.6. Validation tutorial .. 139
4.6.1. Load Complete OCL Tutorial Example Project ... 139
4.6.2. Load Test Model .. 139
4.6.3. EMF Validation .. 140

4.7. Working with Classic OCL ... 143
4.7.1. Overview ... 143
4.7.2. References ... 143
4.7.3. Parsing OCL Expressions ... 143
4.7.4. Parsing OCL Constraints .. 144
4.7.5. Evaluating OCL Expressions and Constraints ... 145
4.7.6. Implementing Content Assist ... 146
4.7.7. Working with the AST ... 147

OCL Documentation

Eclipse OCL 2020-06 (6.12.0) v

4.7.8. Serialization ... 148
4.7.9. Summary ... 149

4.8. Extensions (in the Unified/Pivot OCL prototype) ... 149
4.8.1. Models .. 149
4.8.2. XMI ... 149
4.8.3. Templates .. 150
4.8.4. Extensibility ... 150
4.8.5. Operation Overloading ... 150
4.8.6. Stereotypes .. 150
4.8.7. Safe Navigation .. 150
4.8.8. Reflection .. 150
4.8.9. Lambda Expressions .. 150
4.8.10. Map(K,V) .. 150

4.9. Installing the Eclipse OCL Examples and Editors .. 151
4.9.1. Troubleshooting .. 153

5. Examples ... 154
5.1. Royal and Loyal Example Project ... 154
5.2. Empty Example Project .. 154
5.3. OCLinEcore Tutorial Example Project ... 154
5.4. Complete OCL Tutorial Example Project ... 154
5.5. OCL Interpreter Example .. 154

5.5.1. Introduction ... 154
5.5.2. References ... 155
5.5.3. Description .. 155
5.5.4. Support for Ecore and UML Models ... 156
5.5.5. Example Code .. 157

6. Classic Ecore/UML Programmers Guide ... 158
6.1. Parsing Constraints and Queries ... 159

6.1.1. The OCL Environment ... 159
6.1.2. Creating an OCL Environment .. 161
6.1.3. The OCL Helper ... 161
6.1.4. Operation and Attribute Contexts ... 163

6.2. Evaluating Constraints and Queries ... 163
6.2.1. The OCL Query .. 163

6.3. Parsing OCL Documents ... 165
6.3.1. The OCL Input ... 166
6.3.2. Accessing the Constraints ... 167

6.4. OCL Relationship to Metamodels ... 167
6.4.1. The Ecore Metamodel Binding .. 168
6.4.2. The UML Metamodel Binding ... 169

6.5. Content Assist Support ... 171
6.5.1. Syntax Completion Choices .. 172

6.6. OCL Abstract Syntax Model ... 172
6.6.1. The Visitable and Visitor Interfaces .. 173
6.6.2. Implementing a Visitor .. 173
6.6.3. The OppositePropertyCallExp Extension ... 174

6.7. Customizing the Environment .. 175
6.7.1. Defining Global Variables .. 175
6.7.2. Defining Helper Operations in Java .. 176
6.7.3. Selecting a Package Lookup Strategy .. 179
6.7.4. Customizing Hidden Opposite Lookup and Navigation 180

6.8. OCL Persistence .. 181
6.8.1. The Type Resolver .. 181

6.9. Creating Metamodel Bindings .. 183
6.9.1. The OCL Abstract Syntax Model ... 183

6.10. Incrementally Re-Evaluating OCL Expressions Using the Impact Analyzer 185
6.10.1. Using the Impact Analyzer in EMF Editors .. 187
6.10.2. Algorithm Outline ... 188

OCL Documentation

Eclipse OCL 2020-06 (6.12.0) vi

6.10.3. Impact Analyzer Configuration, Scopes ... 188
6.11. Delegates .. 188

6.11.1. GenModel Settings .. 189
6.11.2. OCL Delegate URIs ... 189
6.11.3. Standalone Initialization .. 189
6.11.4. Invocation Delegates ... 189
6.11.5. Setting Delegates .. 190
6.11.6. Validation Delegates .. 190
6.11.7. Validation Messages .. 190
6.11.8. Query Delegates ... 191

6.12. Ecore/UML Standalone Configuration ... 191
6.12.1. Ecore .. 191
6.12.2. UML ... 191
6.12.3. Classpath ... 192
6.12.4. Xtext Editors .. 192

7. Unified or Pivot Programmers Guide ... 193
7.1. Validators .. 194

7.1.1. OCLinEcoreEObjectValidator .. 194
7.1.2. CompleteOCLEObjectValidator ... 194

7.2. The Pivot Evaluator ... 194
7.2.1. The Evolving Pivot Value System .. 195
7.2.2. The Pivot Value System ... 195
7.2.3. The Pivot Evaluator Type System .. 196
7.2.4. The Pivot Evaluator Implementation System .. 196
7.2.5. Polymorphic Implementations .. 196

7.3. Pivot Standalone Configuration .. 197
7.3.1. Models .. 198
7.3.2. OCL Standard Library ... 198
7.3.3. Pivot Delegates ... 198
7.3.4. Xtext Parsers .. 198
7.3.5. platform:/plugin and platform:/resource URIs ... 199
7.3.6. Classpath ... 199

7.4. Pivot Thread Safety ... 200
7.4.1. Code Generated Evaluation ... 200
7.4.2. Interpreted Evaluation .. 200
7.4.3. OCL Analysis ... 201

7.5. Parsing Constraints and Queries ... 201
7.5.1. The OCL Facade .. 201
7.5.2. OCL Handles ... 202
7.5.3. Class Context ... 202
7.5.4. Operation and Property Contexts .. 202
7.5.5. Errors .. 203
7.5.6. The OCL Helper ... 203

7.6. Evaluating Constraints and Queries ... 204
7.6.1. The OCL Query .. 204
7.6.2. Object representations .. 205
7.6.3. Multiple Evaluations .. 206
7.6.4. Succint Evaluations ... 206

7.7. Parsing OCL Documents ... 206
7.7.1. The OCL Input ... 206
7.7.2. Traversing the Constraints .. 207
7.7.3. Accessing the Constraints ... 207
7.7.4. Using the Constraints to Validate a Model ... 208

7.8. OCL Relationship to Metamodels ... 209
7.8.1. The Pivot Metamodel Binding ... 209

7.9. Ids .. 211
7.9.1. Id Equality ... 211
7.9.2. IdManager ... 211

OCL Documentation

Eclipse OCL 2020-06 (6.12.0) vii

7.9.3. CollectionTypeId ... 211
7.9.4. TupleTypeId ... 211
7.9.5. LambdaTypeId ... 211
7.9.6. ParameterIds .. 211
7.9.7. TuplePartId .. 212
7.9.8. TemplateParameterId ... 212
7.9.9. Code Generation ... 212

8. API Reference .. 213
8.1. Javadoc .. 213
8.2. Extension points .. 213

9. Building the OCL Project ... 214
9.1. OOMPH .. 214
9.2. Maven Central and repo.eclipse.org .. 214
9.3. Maven and Gradle ... 214
9.4. GenModel GenAnnotations ... 214

9.4.1. http://www.eclipse.org/OCL/GenModel GenAnnotation Source 214
9.4.2. http://www.eclipse.org/OCL/GenModel/ToString .. 215
9.4.3. http://www.eclipse.org/OCL/GenModel/Visitor ... 215
9.4.4. http://www.eclipse.org/OCL/GenModel/CopyAndPaste 216
9.4.5. Implementation Details .. 216

A. Glossary .. 217

Eclipse OCL 2020-06 (6.12.0) 1

Chapter 1. Overview and Getting
Started

For a quick demonstration of OCL enrichment of an Ecore meta-model with computed constraints go
to Getting Started.

A PDF version of this documentation is available at OCL 2020-06 (6.12.0) Documentation.

1.1. What is OCL?
• EMF is Modeled Structure

The Eclipse Modeling Framework (EMF) supports the definition of structural meta-models and the
subsequent use of models conforming to these meta-models. EMF also supports generating of Java code
to represent the meta-models. Additional Java code can be provided to add behavior to the structural
meta-models.

• OCL is EMF and Modeled Behavior

OCL provides a modeling language that allows the behavior to be embedded within the structural meta-
models or provided as a complement to those meta-models. As a modeling language, OCL understands
the models and so OCL code is much more compact than the equivalent Java. OCL code can be statically
checked, whereas the corresponding Java code often uses reflection and so cannot be checked.

Eclipse OCL is an implementation of the OMG OCL 2.4 specification for use with Ecore and UML meta-
models.

1.2. How Does It Work?
OCL is a programming language, so you will want to edit it, execute it and debug it.

1.2.1. Editing
Eclipse OCL supports entry of semantically checked OCL expressions

• embedded within Ecore using the OCLinEcore editor

• as complementary documents using the Complete OCL editor

• interactive entry and evaluation using the Interactive OCL console.

• programmatic entry and evaluation using the Java API

EMF supports entry of unchecked OCL

• embedded within Ecore using the Sample Ecore Editor properties view

Eclipse UML supports entry of unchecked OCL

• embedded within UML OpaqueExpressions using the UML Model Editor properties view

Papyrus supports entry of semantically checked OCL expressions

• embedded within UML OpaqueExpressions using the Essential OCL editor

1.2.2. Execution
Eclipse OCL supports OCL execution

• interactive entry and evaluation using the Interactive OCL console.

• programmatic entry and evaluation using the Java API

EMF support for generated models enables OCL execution of

• constraints, operation bodies and property initializers using the Java API

EMF support for dynamic models enables OCL execution of

• constraints using the Validation Delegate API

• operation bodies using the Invocation Delegate API

http://download.eclipse.org/ocl/doc/6.12.0/ocl.pdf

Overview and Getting Started

Eclipse OCL 2020-06 (6.12.0) 2

• property initializers using the Setting Delegate API

• queries using the Query Delegate API

All OCL execution is normally interpreted and starts from the OCL source text (Concrete Syntax). There
is therefore a first time parsing overhead to create the compiled form (Abstract Syntax). The compiled
form is cached to avoid repeated parsing costs.

Altenatively the direct Java code generator may be used as described in the Code Generator Tutorial.

1.2.3. Debugging
Since OCL is used embedded in a larger environment, debugging is not easy to provide for OCL in
isolation. The OCL debugger provides a variety of launch mechanisms that enable re-use of model
element and/or constraint selections.

Alternatively the following approaches may be useful within other toosl

• use the hover-text in the semantic editor to understand the expression types

• use the quick-fixes in the semantic editor for possible corrections

• if the same fix is suggested more than once, try restarting the editor

• use the completion assist in the semantic editor for possible syntaxes

• use intermediate invariants to check partial results

• use the optional explanation messages for an invariant to provide a 'printf'

• use the Interactive Xtext OCL console to practice a problematic expression on a model

1.2.4. Testing
Once again, since OCL is used embedded in a larger environment, testing is not easy to provide for OCL
in isolation. The following approaches may be useful.

• use the Interactive Xtext OCL console to practice sub-expressions of a problematic expression on a
model

The Eclipse OCL development uses an extended JUnit framework that allows the Eclipse OCL code to
be tested by assertions such as:

assertQueryInvalid(null, "let b : Boolean = null in true and b");
assertQueryResults(null, "Set{'b'}", "Set{'a', 'b', 'c'} - Set{'c', 'a'}");

(The null first argument may be a context object.)

See the org.eclipse.ocl.xtext.tests plugin for further details.

1.3. Eclipse OCL is Extensible
The Classic Eclipse OCL is used as a component in a variety of other Eclipse projects such as Acceleo,
BIRT, GMF, Modisco, QVTo. Ecore models are used directly, which leads to some internal difficulties.

The new Unified Eclipse OCL exploits Xtext and uses Ecore models indirectly via a UML-aligned Pivot
models. This provides a choice between the classic APIs that offer limited forward functionality, and the
new APIs that some of which are promoted to non-experimental form in the Mars release. Many remain
experimental and internal.

The new code already offers a fully modeled Standard Library that can be extended or replaced. The
new OCL grammars are extended internally from Essential OCL to OCLinEcore or Complete OCL,
and externally to QVT Core and QVT Relational. The associated Concrete Syntax to Abstract Syntax
mapping is not yet model-driven and so harder to extend.

Full model-driven extensibility is planned for a future release.

1.4. Who Uses OCL and Eclipse OCL?
The OCL specification is defined by the OMG. It originally evolved as part of UML where it is used for
the detailed mathematical aspects that are not appropriate for graphical exposition. OCL 2.0 was split off
from UML 2.0 in recognition of its greater utility.

Overview and Getting Started

Eclipse OCL 2020-06 (6.12.0) 3

Within the OMG context, OCL has been re-used as the foundation for the MOFM2T(Model to Text)
Model-to-Text transformation language and the QVT Model-to-Model transformation language. Eclipse
implementations of these are available as the Acceleo and QVT Operational projects.

Eclipse OCL is an implementation of the OCL specification for use in conjunction with EMF and in
particular Ecore and UML2 meta-models. As the behavioral extension for EMF, Eclipse OCL can be
used wherever EMF can.

As a specification language, OCL is frequently used when the behavior of models is formally specified.

The use of OCL as an execution language has been hindered by the quality of tool support. Beyond the
research domain, many usages have been proprietary. One advanced proprietary usage at SAP has been
contributed to Eclipse OCL and is available as the Impact Analyzer. This supports strategic planning of
run-time notifications so that derived model properties can be updated efficiently in response to a change
to a model. Thousand-fold speed improvements are achievable on large models using OCL rather than
Java because OCL has a formal model-based semantics that is amenable to analysis.

The use of OCL in general is eased by the provision of good editors exploiting Xtext to provide
comprehensive semantic feedback in a familiar editing style.

The use of OCL for execution is enhanced by providing direct Java code generation for OCL embedded in
models. This should alleviate many of the performance concerns for interpreted execution of embedded
OCL.

Debugging of OCL execution is now possible using the OCL debugger and the OCL Console can be
used for OCL experimentation.

1.5. Who is Behind Eclipse OCL?
Eclipse OCL is an Open Source project. The original code for OCL 1.x was contributed by IBM. It has
evolved to support OCL 2.x under the auspices of Eclipse.

There is now a significant personnel and corporate overlap between the Eclipse OCL committers and the
OMG OCL RTF and so Eclipse OCL is pioneering solutions to many of the under-specification problems
in the OCL specification.

You can expect future changes in OMG OCL to have an implementation in Eclipse OCL to demonstrate
their viability. It is likely that the next version of the OCL specification will use Eclipse OCL and
M2T(Model to Text) tooling to eliminate inconsistencies. Eclipse OCL is currently in use to check that
the OCL used in the UML 2.5 specification is syntactically and semantically correct.

Direct tooling of the UML 2.5 and OCL 2.5 specifications for a future Eclipse release may demonstrate
that the OCL aspects of the specifications is also functionally consistent.

1.6. Getting Started
For a very quick demonstration of OCL, you may follow this very abbreviated version of the OCLinEcore
tutorial, where you can find Installation instructions. Once you have the OCL Examples and Editors
feature installed you may follow these instructions to get an insight into the capabilities of OCL and the
Eclipse OCL tooling.

Invoke File->New->Project... then select Examples then OCL (Object Constraint Language)
Plugins then OCLinEcore Tutorial and Finish to create a small example project called
org.eclipse.ocl.examples.project.oclinecoretutorial. It contains

• model/Tutorial.ecore - a small Library meta-model

• model/Tutorial.xmi - an even smaller Library model

• model/Tutorial.genmodel - a gebnerator for Java code

Select model/Tutorial.ecore and use the right button to invoke Open With->OCLinEcore Editor. This
gives you a textual view of the Ecore file with embedded OCL invariants such as the Book constraint

invariant SufficientCopies:
 library.loans->select((book = self))->size() <= copies;

This invariant is named SufficientCopies. It

• navigates from the implicit self (a Book)

Overview and Getting Started

Eclipse OCL 2020-06 (6.12.0) 4

• via the library

• to its loans which it searches

• to select those loans that satisfy the predicate

• loaned book is equal to the self Book

• the size (number) of loans is computed

• and compared to the number of copies of the self Book

The invariant is satisfied if it evaluates true; i.e. if the number of loans is less than or equal to the number
of copies.

You can see this invariant at work, by selecting model/Tutorial.xmi and using the right button to invoke
Open With->Sample Reflective Ecore Model Editor. This gives you a tree view of a small library
model.

Expand the root element and then select the Library lib element and use the right button menu to invoke
Validate. You should get a pop-up reporting problems during Validation. Click Details and you will see
that one of the problems is with the SufficientCopies invariant we have just looked at. If you browse the
Properties View for model/Tutorial.xmi, you can verify that there are three loans but only two copies
for the offending Book.

You may evaluate custom OCL queries interactively. From the editor for Tutorial.xmi, invoke OCL-
>Show Xtext OCL Console from the context menu. Select Book b2 in the editor, then in the bottom
line of the console enter the OCL expression loans.member and then Enter. The results are shown in the
panel and identify that all three loans are by Member m3.

The expression loans.member is an abbreviated form of self.loans->collect(aLoan : Loan |
aLoan.member) and demonstrates OCL’s ability to perform many useful navigations over multi-element
properties. The expression

• navigates from self, the Book b2 selection

• to its loans, using Book::loans which is a derived property defined in OCL

• for each of the loans, the iterator variable, aLoan, is assigned to the loan and

• the body, aLoan.member is evaluated to return the member making the loan

• the resulting members are collected to return a collection result

• the result is displayed on three lines in the results panel

You can step through execution using the OCL debugger. In the Console View type PageUp to restore
the earlier text entry, then with Book b2 still selected in the editor, click the debug icon in the Console
tool bar. The debugger should open automatically, but if it doesn’t, use Window->Show View->Debug
from the Eclipse menu bar. The Variables View shows model elemnt values. Click F5 or Step Into a few
times to progress execution.

You have now seen

• an Xtext editor that embeds OCL directly in Ecore models to provide programmed enrichment

• execution of OCL while validating a model using conventional Ecore tooling

• an interactive Console for custom OCL evaluations

• execution of a derived property defined in OCL

• the ability of OCL to express operations on multi-elements compactly

• the ability to debug OCL execution and browse data

You have not

• written any Java code

• generated any plugins

• needed to start an additional Eclipse session

Please follow the tutorials, examples and reference material for further information.

Eclipse OCL 2020-06 (6.12.0) 5

Chapter 2. Users Guide
The core functionality of OCL that supports expressions over models is called the Essential OCL. This
language is of very limited use by itself since there is no way in which the models can be provided.
Essential OCL is therefore extended in various ways to provide this missing context.

The Complete OCL provides a language for a document in which OCL complements an existing meta-
model with invariants, and additional features.

OCLinEcore embeds OCL within the annotations of an Ecore model to enrich that model.

UML supports the use of OCL constraints as a form of OpaqueExpression, and UML tools such as Papyrus
support those constraints for UML models.

The Eclipse OCL project provides four OCL languages to support these usages.

• Essential OCL provides the core extensible capability of specifying expressions for models.

• Complete OCL provides the ability to use OCL in a self-standing document to complement an existing
meta-model with invariants, and additional features.

• OCLinEcore enables OCL to be embedded within an Ecore meta-model to add invariants for classifiers,
bodies for operations and computed values for properties.

• OCLstdlib supports the definition of the standard and custom OCL Standard Libraries.

2.1. The two Eclipse OCLs
The Eclipse OCL project is making a transition to a new underlying infrastructure.

2.1.1. The Classic Eclipse OCL metamodels
The Classic code base emphasized utility for Java programmers. It originally supported Ecore meta-
models and evolved to support UML as well. An OCL Console was added to support interactive
experimentation with OCL expressions.

Interactions with the QVTd project resulted in a refactoring of the grammars so that they could be
extended for use by QVT. At the same time the grammars were migrated to use LPG 2.

The dual support for Ecore and UML was achieved by a shared generic meta-model in which the
distinctions between Ecore and UML meta-models were accommodated by substantial (often ten
parameter) template parameters lists. Sometimes these lists are hidden by derived bindings, but sometimes
the full lists are exposed. This gives rather cumbersome Java code for the OCL developers and OCL
consumers alike.

The classic evaluator is tightly coupled to Ecore which might appear efficient, but the lack of separation
of OCL-specification semantics from Java-implementation semantics makes accurate implementation of
equality in nested collections hard to achieve.

The classic code endeavored to comply with OCL specification despite significant ambiguities in the
specification, but since the classic code evolved from an OCL 1.x compliance and Ecore utility there are
a number of areas where accurate OMG compliance is hard to achieve.

The classic code is provided primarily by the following plugins

• org.eclipse.ocl

• org.eclipse.ocl.ecore

• org.eclipse.ocl.uml

2.1.2. The Unified or Pivot Eclipse OCL metamodel
The Unified or Pivot metamodel is a prototype for a resolution of a number of fundamental problems
with the OCL 2.4 specification. The Pivot metamodel is derived from the UML metamodels for UML
and OCL to provide a unified metamodel for UML with executable semantics.

In practice, when using the Pivot metamodel for Ecore or UML metamodels, a Pivot metamodel instance
is created on the fly to provide the unified merged OCL functionality for the Ecore or UML metamodel
instances.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 6

From the specification perspective, the Pivot metamodel

• is UML-aligned

• supports modeling of the OCL standard library

• supports ‘merging’ of additional Complete OCL definitions

• supports an interchangeable XMI representation

• supports a fully reflective oclType()

From the Eclipse perspective, the Pivot metamodel

• hides Ecore differences with respect to EMOF

• hides MDT/UML2 differences with respect to UML

• allows much of the semantics to be defined by a single library model

• allows user extension and replacement of the library model

• allows for exact OMG compliance

At the same time, the Values package that forms part of the specification has been partially implemented.
This allows a clear separation of OCL-semantics.

The unified code is provided by the

• org.eclipse.ocl.pivot

with additional optional support for UML in

• org.eclipse.ocl.pivot.uml

Additional editing functionality using Xtext is provided by plugins sharing the prefix

• org.eclipse.ocl.xtext

Further functionality that remains of exampe qulaity may be fopund in plugins sharing the prefix

• org.eclipse.ocl.examples

All APIs in Xtext and Examples plugins are preliminary, as are APIS in classes including ‘internal’ in
method, class or package name.

2.1.3. The transition
This transition started in the Helios (3.0) release for which Xtext editors were provided for OCLinEcore,
Complete OCL and the OCL Standard Library. There was then no Pivot meta-model and so the editors
offered only syntactic validation. It was not possible to persist an AST as XMI or to evaluate code that
had been parsed by the Xtext parsers. It was necessary to re-parse with the LPG parsers.

In the Indigo (3.1) release, the Pivot metamodel prototype was introduced and used to support semantic
validation within the Xtext editors. The OCL Standard Library was realised using the Pivot metamodel
and a new highly extensible evaluator was implemented. These facilities are used by the new OCL Xtext
Console.

Therefore when using the OCL Xtext Console the contributing tools are

• Essential OCL Xtext editor

• Pivot Metamodel

• OCL-2.5.oclstdlib library

• Pivot Evaluator

• Pivot Debugger

When using the classic OCL Console the contributing tools are

• LPG parser and hand-coded Syntax Helper

• Ecore (or UML) metamodel bindings

• Hand coded library implementation

• Classic evaluator

Users Guide

Eclipse OCL 2020-06 (6.12.0) 7

Since these tools are different there may be occasions where the increased OMG compliance of the Pivot
metamodel gives different behavior to the classic metamodels.

In the Juno (3.2/4.0) release, there is a preliminary Java code generator for the Pivot metamodel so that
all the parsing overheads and significant parts of the execution overheads of OCL embedded in Ecore
models occurs at genmodel time rather than during execution.

In the Kepler (3.3/4.1) release, the code generator was substantially improved and a number of internal
APIs have evolved accordingly. UML support was improved to facilitate usage within Papyrus, and
extensibility was improved for use by QVTd.

In the Luna (3.4/5.0) release, further code generation improvements have been made and major new User
Interface capabilities added. There is at last an OCL debugger and a Constraint Validity View.

In the Mars (1.0/6.0) release, the transition is nominally complete and the main org.eclipse.ocl.examples.*
plugins have been renamed to org.eclipse.ocl.*. All functionality should use the new Pivot metamodel by
default. However the classic Ecore and UML support will remain for compatibility. Unfortunately time
ran out and so review and revision hads to be truncated. Documentation is sadly deficient.

The Neon (1.1/6.1), Neon++(1.2/6.2), Oxygen (1.3/6.3) and Photon (1.4/6.4) resolve a variety of
extensibility issues highlighted by Eclipse QVTd. (The double Neon release was necessiated by SSPI
breakage in Xtext 2.9. The Neon release continuing with pre-Xtext 2.9 API, Neon++ migrating.)

Hopefully the future (2.0/7.0) release will track the actual OCL 2.5 submission.

2.1.4. Migration
The difficulties of moving from the Ecore/UML-based OCL to the Pivot-based OCL depend on the style
of usage.

2.1.4.1. Language
The OCL Concrete Syntax is the same for both Eclipse OCLs and Pivot-based Xtext tooling has been in
use for Ecore-based OCL for a few releases.

The Pivot-based OCL supports a number of new prototype facilities such as null-free collections, template
types, map types and lambda types that are not available with the Ecore-based tooling.

2.1.4.2. AS Models
The Abstract Syntax models are superficially similar; both have an OCLExpression, however the details
are quite different.

The OMG OCL specification requires the AS model to be serializeable in XMI. This is not possible with
the current OCL specifications. The intent is partially satisfied for the Ecore/UML-based models using
proprietary solutions. The Pivot-based models are fully serializeable and prototype a solution that may
be adopted by OCL 2.5.

The Ecore/UML-based models extend the Ecore.ecore/UML.ecore models and so use for instance
EStructuralFeature/org.eclipse.uml2.uml.Property as the type of a PropertyCallExp.referredProperty.

The Pivot-based models are UML-aligned and self-contained and so a PropertyCallExp.referredProperty
is an org.eclipse.ocl.pivot.Property. Property names are derived from UML but made consistent;
‘many’ properties use a plural name; and 'composed; properties use ‘owned’/‘owning’. Thus UML’s
Class.ownedAttribute aligns to Pivot’s Class.ownedProperties.

Since the Pivot-based models have no dependence on an external model, the Pivot Visitors provide an
ability to visit all classes, whereas the Ecore/UML-based visitors are partial; Ecore/UML classes must
use an EcoreSwitch instead.

The Ecore/UML based models have no support for UML reflection. A form of reflection is available with
eClass(), but the result type names are necessarily EClass.

The Pivot-based models support consistent reflection using oclType() which return an
ocl.eclipse.ocl.pivot.Class.

The Ecore/UML-based OCL does not use models for additional facilities defined by Complete OCL; an
irregular Java API is available.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 8

The Pivot-based approach creates an additional Package for the Complete OCL contributions and behaves
as if the complementing Package was merged with the complemented Package.

2.1.4.3. CS Models
The Concrete Syntax models are non-normative and have very little commonality.

The Ecore/UML-based models are designed for use with the LPG LALR parser.

The Pivot-based models are designed for use with Xtext and LL ANTLR tooling.

Any user code that uses the CS models is likely to be very tightly coupled to internal APIs and so will
need rebuilding and quite possibly updating for each new release.

2.1.4.4. The OCL Facade
The complexities of the underlying OCL support are hidden by an OCL Facade, with similar interfaces
in all three variants.

• org.eclipse.ocl.ecore.OCL

• org.eclipse.ocl.uml.OCL

• org.eclipse.ocl.pivot.utilities.OCL

Contrasting the deliberately similar examples in

• Classic Ecore/UML Programmers Guide

• Unified or Pivot Programmers Guide

may be instructive.

The Pivot approach is simplified a little by the dual Facade/Handle behavior which ensures that OCL
facilities are garbage collected.

2.1.4.5. The OCL Architecture
While many of the internal classes share similar intents and names between the approaches, the details
have evolved as the new approach has learned from its predecessor

• long template parameter lists are eliminated

• APIs are more strongly typed using e.g. TypedElement rather than String ‘name’ arguments

• API compatible extension APIs are folded into a single new API

• full auto-generated Visitor hierarchies are exploited

and of course Xtext is far from identical to LPG.

2.1.5. APIs
Eclipse OCL has two different styles of APIs

2.1.5.1. Tool APIs
The major tool APIs originally provided by the org.eclipse.ocl.OCL class have evolved only
slightly to org.eclipse.ocl.ecore.OCL and org.eclipse.ocl.uml.OCL for the classic metamodels and
org.eclipse.ocl.pivot.OCL for the Pivot metamodel.

These APIs support the use of OCL as a tool to parse and evaluate constraints and queries.

These APIs will change very little; just the package changes according to the chosen metamodel
representation.

2.1.5.2. Internal APIs
The internal parsing APIs were made public in 1.3.0 to support parser extension by QVT. These APIs are
very tightly coupled to a particular LPG implementation of a particular OCL grammar formulation. It is
extremely difficult to replicate these APIs for the ANTLR grammar that underlies the Xtext editors. It is

Users Guide

Eclipse OCL 2020-06 (6.12.0) 9

also doubtful whether these APIs can be preserved as the OCL specification is clarified to more clearly
specify what words are reserved and what is extensible.

It is therefore unlikely that the internal APIs for the classic metamodels will be replicated for the Pivot
metamodel. However since an LPG grammar is significantly (ten-times) smaller and perhaps a bit faster
(two-times) it is planned to provide an automated Xtext to LPG translation so that a smaller LPG grammar
can populate the same auto-generated Concrete Syntax structures as the ANTLR grammar.

This functionality is intended to form part of a new grammar extension API that will enable OCL-
extending languages such as QVT to re-use and extend not only the grammar but also all the semantic
scope resolution and concrete to abstract syntax mappings.

2.1.5.3. Versions
Eclipse version numbering policy requires that a major version change occurs when any re-exported
component has a major version number change. Consequently when Eclipse UML moved from to UML
2.4 support (4.0.0) and again to UML 2.5 (5.0.0) a corresponding change was forced on the Classic
UML support and this is the number that then applies to the whole of Eclipse OCL. However the
Ecore dependencies are unchanged and so Ecore dependent releases have advanced more slowly; 3.2
accompanying 4.0 and now 3.5 accompanying 6.0.

This is probably just as confusing for the developers as for consumers. It is however necessary to ensure
that the minor changes in the Classic Ecore functionality are not presented as major changes to consumers.

The current OCL version variaously referred to as:

• 6.0 as the outer version of the OCL master feature

• 3.5 as the version of the Ecore OCL plugins (compatible with 3.0)

• 1.0 as the version of the new Pivot OCL plugins

2.2. The Essential OCL Language
The core functionality of OCL that supports expressions over models is called the Essential OCL. This
language is of very limited use by itself since there is no way in which the models can be provided.

Essential OCL is extended in various ways to provide this missing context.

The Complete OCL provides a language for a document in which OCL complements an existing meta-
model with invariants, and additional features. Complete OCL is part of the OMG OCL specification.

OCLinEcore embeds OCL within the annotations of an Ecore model to enrich that model. OCLinEcore
is defined an Eclipse OCL. It is not part of the OMG OCL specification.

UML supports the use of OCL constraints as a form of OpaqueExpression, and UML tools such as Papyrus
support those constraints for UML models.

2.2.1. Syntax
The Eclipse OCL realization of the Essential OCL grammar is provided in the following subsections,
starting with the expression terms and then elaborating the operators.

2.2.1.1. Grammar Implementation
The grammar used by the Xtext editors may be found at:

/src/org/eclipse/ocl/examples/xtext/essentialocl/EssentialOCL.xtext

in the org.eclipse.ocl.xtext.essentialocl plugin.

2.2.1.2. Grammar Approach
The OCL 2.4 grammar is ambiguous and consequently has disambigating rules. How those
disambiguating rules are applied is an implementation detail.

The disambiguating approach taken in Eclipse OCL is to parse an unambiguous larger language that
unifies all the ambiguities. Subsequent semantic validation distinguishes between the ambiguities and
diagnoses expressions from the larger language that are not valid OCL expressions.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 10

From a technical point of view this makes the grammar simpler and more regular, and the implementation
more modular and configurable by the library model.

From a user’s point of view, slightly wrong expressions may be syntactically valid and so semantic
validation may produce a more helpful diagnostic. However completion assist may offer illegal
expressions from the larger language.

2.2.1.3. OCL Expression
The Exp syntax defines an OCL expression.

Expressions consist of a variety of operators and expression terms that are defined at the top level by an
InfixedExp. We will first define the terms of an expression and then define the various forms of operators
that bind expression terms together.

2.2.1.4. PrimaryExp
The PrimaryExp syntax identifies the basic building blocks of an OCL expression.

Literals such as

• PrimitiveLiteralExpCS - true or 3.14159

• CollectionLiteralExpCS - Set{1..5}

• TupleLiteralExpCS - Tuple{name:String='me',at:String='here')

• TypeLiteralExpCS - Integer or Set<Integer>

The context object

• SelfExpCS - self

Compound expressions such as

• NestedExpCS - (x)

• IfExpCS - if x then y else z endif

• LetExpCS - let x : Integer in x + x

Navigation expressions such as

• NavigatingExpCS - x or x.Y::z->iterate(a:Integer;acc:Integer|acc+a)

2.2.1.5. SelfExp
The SelfExp syntax supports the use of the prevailing context object in an expression.

2.2.1.6. PrimitiveLiteralExp
The PrimitiveLiteralExp syntax supports the use of a known value in an expression.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 11

The value may be

• NumberLiteralExpCS - 4 or 3.14159

• StringLiteralExpCS - 'a string'

• BooleanLiteralExpCS - true or false

• UnlimitedNaturalLiteralExpCS - *

• InvalidLiteralExpCS - invalid

• NullLiteralExpCS - null

2.2.1.7. NumberLiteralExp
The NumberLiteralExp syntax supports the use of a numeric value in an expression.

A numeric value is

• an integer such as 4

• fixed point number such as 3.1

• floating point number such as 12.8e-5.

A numeric value does not have a leading -; negative numbers are parsed as the application of a unary
negate operator to a positive number.

A numeric value may not have a trailing decimal point.

A numeric value may not have a redundant leading zero.

2.2.1.8. StringLiteralExp
The StringLiteralExp syntax supports the use of a string value in an expression.

A string is specified as a character sequence between single quotes.

e.g. 'This is a string'

The standard Java and C backslash escapes can be used for awkward characters such as a single quote.

\b -- #x08: backspace BS

\t -- #x09: horizontal tab HT

\n -- #x0a: linefeed LF

\f -- #x0c: form feed FF

\r -- #x0d: carriage return CR

Users Guide

Eclipse OCL 2020-06 (6.12.0) 12

\" -- #x22: double quote "

\' -- #x27: single quote '

\\ -- #x5c: backslash \

\x Hex Hex -- #x00 to #xFF

\u Hex Hex Hex Hex -- #x0000 to #xFFFF

2.2.1.9. BooleanLiteralExp
The BooleanLiteralExp syntax supports the use of boolean values in an expression.

The Boolean values are true and false.

2.2.1.10. UnlimitedNaturalLiteralExp
The UnlimitedNaturalLiteralExp syntax supports the use of the non-numeric unlimited value in an
expression.

The Non-numeric unlimited value is *. Other UnlimitedNatural values are NumberLiteralExpCS.

2.2.1.11. InvalidLiteralExp
The InvalidLiteralExp syntax supports the use of an invalid value in an expression.

The invalid value is invalid.

2.2.1.12. NullLiteralExp
The NullLiteralExp syntax supports the use of a null or unspecified value in an expression.

The null value is null.

2.2.1.13. CollectionLiteralExp
The CollectionLiteralExp syntax supports the creation of a collection of values for use in an expression.

A collection literal comprises the CollectionType followed by braces enclosing a comma-separated list
of zero or more CollectionLiteralParts.

e.g. Sequence{1,2,4..6}

Note that null, collection and tuple values are permitted in collections but that invalid values are not. A
collection ‘containing’ an invalid value is flattened to the invalid value.

2.2.1.14. CollectionLiteralPart
The CollectionLiteralPart syntax supports the use of a value or range of values in a collection of values.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 13

A single item collection literal part may be any expression (except invalid). e.g. 1+2

A multi-item collection literal part comprises the inclusive range of values between two integer limits.

1..3 is the three values 1, 2, 3.

1..-1 is the three values 1, 0, -1.

2.2.1.15. TupleLiteralExp
The TupleLiteralExp syntax supports the use of a tuple of named expression values in an expression.

A tuple literal comprises the Tuple keyword followed by braces enclosing a comma-separated list of
one or more TupleLiteralParts.

Tuple{year:Integer='2000',month:String='January',day:Integer='1'}

2.2.1.16. TupleLiteralPart
The TupleLiteralPart syntax supports the use of a named expression value in a tuple of such values.

The part comprises the name, an optional type and a value. If the type is omitted, it is inferred from the
value.

leapyear : Boolean = true

2.2.1.17. TypeLiteralExp
The TypeLiteralExp syntax supports the use of types as values in an expression. This is useful for
expressions such as myCollection.oclAsType(Set<MyType>).

A TypeLiteralExp comprises a TypeLiteral.

2.2.1.18. NestedExp
The NestedExp syntax supports the use of an inner expression as a term in an outer expression ensuring
that the operator precedence of the inner expression is not affected by the outer expression,

A nested expression is just an expression surrounded by parentheses.

2.2.1.19. IfExp
The IfExp syntax supports the use of a conditional choice of expression value in an expression.

An if expression comprises a condition expression to be tested followed by a then-expression to be
evaluated if the condition is true and an else-expression for evaluation if the expression is false.

if this.size > that.size then this else that endif

Note that the else-expression is required and so there is no ambiguity when multiple if expressions are
nested.

2.2.1.20. LetExp
The LetExp syntax supports the introduction of local variables to facilitate re-use of intermediate results
within an expression.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 14

A let expression comprises the let keyword followed by one or more comma-separated let variables and
then the in keyword and the in-expression to be evaluated with the help of the extra variables.

Each let variable comprises a name, an optional type and an expression to initialize the variable. If the
type is omitted, it is inferred from the initializer.

let test : String = 'prefix[contents]suffix',
 start : Integer = test.indexOf('['),
 finish : Integer = test.indexOf(']')
in test.substring(start,finish)

The let syntax has no terminating keyword such as endlet and so there is an ambiguity for for instance 1
+ let b : Integer = 2 in b + 4. The ambiguity is resolved as 1 + let b : Integer
= 2 in (b + 4) by selecting the longest possible in-expression.

2.2.1.21. NameExp
The NameExp syntax supports the use of the name of a model element such as a property, operation or
type in an expression.

A name expression comprises a name optionally prefixed by double-colon separate path names.

The first name is an UnrestrictedName, that is a name that does not clash with any OCL reserved words
such as else or built-in types such as String. Subsequent names are UnreservedName allowing the
re-use of built-in type names but not reserved words.

2.2.1.22. IndexExp
The IndexExp syntax supports the application of qualifiers to a model property to distinguish the source
or select a particular association.

A NameExp identifying a model property is optionally qualified by a first list of qualifiers and a second
list of qualifiers.

This syntax is experimental and the qualifiers are not yet supported for evaluation.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 15

2.2.1.23. NavigatingExp
The NavigatingExp syntax supports the navigation of models using model properties, operations and
iterations.

An IndexExp identifying a potentially qualified model feature is optionally followed by a parenthesized
arguments. If the parenthesized arguments are omitted the model feature should be a Property. If the
arguments are present the model feature should be an iteration or operation.

The diverse syntaxes specified by OCL 2.4 for OperationCallExpCS and IteratorExpCS create
ambiguities that are difficult to parse. The merged grammar used by Eclipse OCL gathers argument
contributions without imposing premature validation.

The parenthesized arguments may be empty, or may comprise one or more parameters, optional
accumulators and optional bodies.

The comma-separated list of parameters starts with a NavigatingArgCS, followed by any number of
NavigatingCommaArgCS.

simpleCall(simpleArgument)

The optional comma-separated list of accumulators are introduced by a semi-colon-prefixed
NavigatingSemiArgCS, followed by any number of NavigatingCommaArgCS.

some->iterate(p; anAccumulator : Integer = 0 | p.size())

The optional comma-separated list of bodies are introduced by a vertical-bar-prefixed
NavigatingBarArgCS, followed by any number of NavigatingCommaArgCS.

some->exists(p | p.size())

2.2.1.24. NavigatingArg
The NavigatingArg syntaxes supports the parsing of potential parameters, accumulators and bodies for
use in NavigatingExps.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 16

Each syntax supports an optional type and an optional initializer for an expression.

2.2.1.25. PrefixedExp
The PrefixedExp syntax supports the application of zero or more prefix unary operators to an expression.

The prefix operator precedes an expression: -4 or not(this or that)

The unary operators are

• - negate

• not logical complement

2.2.1.26. InfixedExp
The InfixedExp syntax supports the application of zero or more infix binary operators between expression
terms.

The infix operators separate expression terms: 1 + 2 / 3 * 4 / 5 + 6.

The infix operators are

• The NavigationOperators

• *, / multiply and divide

• +, - add and subtract

• <, <=, >=, > relational comparisons

• =, <> equality and inequality

• and logical and

• or inclusive or

• xor exclusive or

• implies logical implication

Users Guide

Eclipse OCL 2020-06 (6.12.0) 17

The precedence and associativity of the operators is defined by the OCL Standard Library model, not by
the grammar. The OCL 2.4 library precedence is as presented above with all operators left associative.
The example above is therefore interpreted as (1 + (((2 / 3) * 4) / 5)) + 6.

2.2.1.27. NavigationOperators
The NavigationOperators operators are

• . for object navigation

• -> for collection navigation

2.2.1.28. TypeExp
The TypeExp syntax supports the use of types as expressions.

A type expression may be a

• TypeNameExpCS - a user-defined type

• TypeLiteralCS - a built-in or aggregate type

2.2.1.29. TypeNameExp
The TypeNameExp syntax supports the use of a user-defined types as a declaration or expression.

A name expression comprises the name of a type optionally prefixed by double-colon separate path
names.

The first name is an UnrestrictedName, that is a name that does not clash with any OCL reserved words
such as else or built-in types such as String. Subsequent names are UnreservedName allowing the
re-use of built-in type names but not reserved words.

2.2.1.30. TypeLiteral
The TypeLiteral syntax supports the use of built-in or aggregate types as declarations or expressions.

A Type literal may be a

• PrimitiveTypeCS

• CollectionTypeCS

• TupleTypeCS

2.2.1.31. PrimitiveType
The PrimitiveType syntax supports the definition of a built-in type for use in a declaration or expression.

The built-in types are

• Boolean

• Integer

Users Guide

Eclipse OCL 2020-06 (6.12.0) 18

• Real

• String

• UnlimitedNatural

• OclAny

• OclInvalid

• OclVoid

2.2.1.32. CollectionType
The CollectionType syntax supports the definition of a collection type for use in a declaration or
expression.

A collection type comprises the CollectionTypeIdentifier followed by a Type Expression defining the
type of the collection elements.

Set(String) or Sequence<Bag<Integer>>

The built-in CollectionTypeIdentifiers are

• Collection

• Bag

• OrderedSet

• Sequence

• Set

OCL 2.4 specifies the use of parentheses to surround the element type. Eclipse OCL additionally allows
angle brackets as specified by UML and as may be required to support more general templated types.

2.2.1.33. TupleType
The TupleType syntax supports the definition of a tuple type for use in a declaration or expression.

A tuple type comprises the Tuple keyword followed by a comma-separated list of one or more
TupleParts.

OCL 2.4 specifies the use of parentheses to surround the parts. Eclipse OCL additionally allows angle
brackets as specified by UML and as may be required to support more general templated types.

Tuple<year:Integer,month:String,day:Integer>

2.2.1.34. TuplePart
The TuplePart syntax supports the definition of an element of a TupleType.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 19

The part comprises the name and a type and a value.

leapyear : Boolean

2.2.1.35. UnreservedName
The Essential OCL reserved words are and, else, endif, false, if, implies, in, invalid,
let, not, null, or, self, then, true, xor. These can only be used as names when escaped as
in _'self'.

2.2.1.36. UnrestrictedName
The Essential OCL restricted words are the reserved words above and the OCL reserved type
names which are Bag, Boolean, Collection, Integer, Lambda, OclAny, OclInvalid,
OclMessage, OclSelf, OclVoid, OrderedSet, Real, Sequence, Set, String, Tuple,
UnlimitedNatural. An UnrestrictedName can be used in any context. The reserved type names
can be used following a :: qualification, Without qualification unrestricted names must be escaped as
_'Boolean'.

Lambda is used in experimental syntax that realizes iterator bodies as lambda-expressions.

2.3. The OCLinEcore Language
Ecore Abstract Syntax supports the use of OCL embedded within EAnnotations.

The OCLinEcore language provides a textual Concrete Syntax that makes both Ecore and OCL accessible
to users. Examples may be found in OCLinEcore Library Metamodel and OCLinEcore Helpers.

The OCLinEcore tooling provides a rich editing environment based on Xtext with strong semantic
checking.

OCLinEcore is more than just an editor for OCL in Ecore, it is useful for

• providing a coherent textual view of an Ecore meta-model

• providing syntax sugar for some Ecore conventions

• editing and validating OCL

• integrating OCL into Ecore

It is planned to take the syntactic sugar further and provide full support for all class-related UML concepts.
The language therefore uses UML as its point of reference wherever possible.

The OCLinEcore tooling may be used directly on *.ecore files, or on their *.oclinecore textual
counterparts.

Please follow the OCLinEcore tutorial for an introduction to the language and its tooling.

2.3.1. Syntax
The OCLinEcore syntax has a consistent structure influenced by the informal definitions in OMG
specifications and by the Ecore hierarchy. Most Ecore concepts are represented by a syntax of the form:

• optional primary adjectives

• mandatory keyword

• mandatory name facet

• further facets

• an optional braced clause of secondary adjectives

• an optional braced clause of elements

• composed elements

• annotations

Users Guide

Eclipse OCL 2020-06 (6.12.0) 20

• constraints

Thus in:

abstract class Example extends Base { interface } { ... }

• abstract is a primary adjective

• class is a keyword

• Example is the name facet

• extends Base is a further facet

• { interface } supports the secondary interface adjective.

• { ... } provides a nested context for class content.

2.3.1.1. Grammar Implementation
The grammar used by the Xtext editors may be found at:

/src/org/eclipse/ocl/examples/xtext/oclinecore/OCLinEcore.xtext

in the org.eclipse.ocl.xtext.oclinecore plugin. The OCLinEcore grammar extends the Essential OCL
grammar.

2.3.1.2. Module
The Module syntax supports the overall structure of an Ecore file

The definition of the module comprises

• optional module declaration

• optional specification of the OCL Standard libraries

• optional import of referenced Ecore or UML or OCLinEcore resources

• a hierarchy of Packages

Zero or more external libraries may be imported so that their definitions are merged to form a composite
library of basic and extended evaluation capability.

The implicit import of the default OCL Standard Library is suppressed, if any library is imported. The
default library may be extended by specifying it as the first library import.

library ocl : 'http://www.eclipse.org/ocl/3.1.0/OCL.oclstdlib'

The namespace URI of the first library package defines the namespace URI of the composite library. The
namespace URI of subsequent library imports may not conflict, but may be null.

Zero or more external metamodels may be imported.

2.3.1.3. Package
The Package syntax supports a nested hierarchy of packages and classifiers

A Package has a name and optionally a namespace prefix and namespace URI.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 21

The content of a Package may comprise Packages, Classifiers and Annotations.

2.3.1.4. Classifier
The Classifier syntax supports the definition of types within a Package.

A Classifier may be

• a Class

• a DataType

• an Enumeration with associated EnumerationLiterals

2.3.1.5. DataType
The DataType syntax supports the definition of an EDataType.

A DataType has a name and optionally template parameters and an instance class name.

A DataType may be serializable; by default it is not.

The content of a DataType may comprise invariants and Annotations.

2.3.1.6. Enumeration
The Enumeration syntax supports the definition of an EEnum.

An Enumeration has a name and optionally template parameters and an instance class name.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 22

An Enumeration may be serializable; by default it is not.

The content of an Enumeration may comprise enumeration literals, invariants and Annotations.

2.3.1.7. EnumerationLiteral
The EnumerationLiteral syntax supports the definition of an EEnumLiteral.

An EnumerationLiteral has a name and optionally a value.

The content of an EnumerationLiteral may comprise Annotations.

2.3.1.8. Class
The Class syntax supports the definition of an EClass.

• optional abstract prefix

• optional extension of other classifiers

• optional invariants, annotations, features and operations

A Class may be abstract has a name and optionally template parameters.

(NB, the ‘abstract’ prefix is optional, even though the figure indicates that it is mandatory.)

A Class may extend one or more other Classes that may be specialized using the template parameters.

A Class may have an instance class name, and may also be declared to be an interface.

The content of a Class may comprise Annotations, Operations, StructuralFeatures and invariants.

2.3.1.9. StructuralFeature
The StructuralFeature syntax supports the definition of the StructuralFeatures.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 23

A StructuralFeature may be

• an Attribute

• a Reference

2.3.1.10. Attribute
The Attribute syntax supports the definition of an EAttribute; a Property with a DataType value.

An Attribute may be static and has a name.

The static qualifier supports declaration of static properties which are supported by UML and OCL.
Note that Ecore does not support static properties.

The definition qualifier is an obsolete experimental syntax for Complete OCL definitions.

An Attribute may may have a Type and multiplicity.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 24

An Attribute may a simple initializer and a variety of qualifiers:

• derived specifies a derived attribute (default !derived)

• id specifies that the attribute provides the identifier if its class (default !id)

• ordered specifies that the attribute elements are ordered (default !ordered)

• readonly specifies that the attribute elements are readonly (not changeable) (default !readonly)

• transient specifies that the attribute elements are computed on the fly (default !transient)

• unique specifies that there are no duplicate attribute elements (default unique)

• unsettable specifies that attribute element may have no value (default !unsettable)

• volatile specifies that the attribute elements are not persisted (default !volatile)

The content of an Attribute may comprise Annotations, initial and derived constraints.

A simple constant value may be defined using the initializer. A computed value requires the use of a
constraint. If both initial and derived constraints are present, the initial constraint is ignored.

The defaults for multiplicity lower and upper bound and for ordered and unique follow the UML
specification and so corresponds to a single element Set that is [1] {unique,!ordered}. Note that
UML defaults differ from the Ecore defaults which correspond to an optional element OrderedSet, that
is [?] {ordered,unique}.

2.3.1.11. Reference
The Reference syntax supports the definition of an EReference; a Property with a Class value.

An Reference may be static and has a name and optionally an opposite name.

The static qualifier supports declaration of static properties which are supported by UML and OCL.
Note that Ecore does not support static properties.

The definition qualifier is an obsolete experimental syntax for Complete OCL definitions.

A Reference may may have a Type and multiplicity.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 25

A Reference may a simple initializer and a variety of qualifiers:

• composes specifies a composed (containing) reference (default !composes)

• derived specifies a derived reference (default !derived)

• ordered specifies that the reference elements are ordered (default !ordered)

• readonly specifies that the reference elements are readonly (not changeable) (default !readonly)

• resolve specifies that the reference elements proxies may need resolution (default !resolve)

• transient specifies that the reference elements are computed on the fly (default !transient)

• unique specifies that there are no duplicate reference elements (default unique)

• unsettable specifies that reference element may have no value (default !unsettable)

• volatile specifies that the reference elements are not persisted (default !volatile)

Users Guide

Eclipse OCL 2020-06 (6.12.0) 26

The content of a Reference may comprise keys, Annotations, initial and derived constraints.

A simple constant value may be defined using the initializer. A computed value requires the use of a
constraint. If both initial and derived constraints are present, the initial constraint is ignored.

The defaults for multiplicity lower and upper bound and for ordered and unique follow the UML
specification and so corresponds to a single element Set that is [1] {unique,!ordered}. Note that
UML defaults differ from the Ecore defaults which correspond to an optional element OrderedSet, that
is [?] {ordered,unique}.

2.3.1.12. Operation
The Operation syntax supports the definition of an EOperation.

An Operation may be static and has a name and optionally template parameters.

The static qualifier supports declaration of static operations which are supported by UML and OCL.
Note that Ecore does not support static operations.

The definition qualifier is an obsolete experimental syntax for Complete OCL definitions.

An Operation has zero of more Parameters.

An Operation may have a return Type and multiplicity.

An Operation may declare zero or more throw Exceptions.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 27

An Operation may have a variety of qualifiers:

• derived specifies a derived operation (default !derived)

• ordered specifies that the returned elements are ordered (default !ordered)

• unique specifies that there are no duplicate returned elements (default unique)

The content of an Operation may comprise Annotations, precondition, postcondition and body
constraints.

The static qualifier supports declaration of static operations which are supported by UML and OCL.
Note that Ecore does not support static operations.

The definition qualifier is an obsolete experimental syntax for Complete OCL definitions.

The defaults for multiplicity lower and upper bound and for ordered and unique follow the UML
specification and so corresponds to a single element Set that is [1] {unique,!ordered}. Note that
UML defaults differ from the Ecore defaults which correspond to an optional element OrderedSet, that
is [?] {ordered,unique}.

2.3.1.13. Parameter
The Parameter syntax supports the definition of an EParameter.

A Parameter has a name, optional "Type:#OCLinEcore-TypeRef and multiplicity

Users Guide

Eclipse OCL 2020-06 (6.12.0) 28

A Parameter may have a variety of qualifiers:

• ordered specifies that the returned elements are ordered (default !ordered)

• unique specifies that there are no duplicate returned elements (default unique)

The content of a Parameter may comprise Annotations.

The defaults for multiplicity lower and upper bound and for ordered and unique follow the UML
specification and so corresponds to a single element Set that is [1] {unique,!ordered}. Note that
UML defaults differ from the Ecore defaults which correspond to an optional element OrderedSet, that
is [?] {ordered,unique}.

2.3.1.14. Types
The Type syntax supports the definition of EType and EGenericType in conjunction with an
ETypedElement. The syntax is very similar to Java.

PrimitiveTypeRefCS provides access to the built-in OCL types and their corrersponding Ecore
counterparts

OCL type Ecore type

Boolean EBoolean

Integer EBigInteger

Real EBigDecimal

String EString

UnlimitedNatural EBigInteger

TypedTypeRefCS provides for user defined types and their template parameterisation.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 29

2.3.1.15. AnnotationElement
The AnnotationElement syntax supports the definition of an EAnnotation hierarchy with details,
references and contents.

An AnnotationElement may be Annotation or Documentation.

2.3.1.16. Annotation
The Annotation syntax supports the definition of an EAnnotation hierarchy with details, references and
contents.

An Annotation has a source URI, which may be specified without quotes if the URI is just a name.

An Annotation may have Details.

The content of an Annotation may comprise

• Annotations

• content elements

• names that reference other elements

2.3.1.17. Detail
The Detail syntax supports the definition of a detail of an EAnnotation.

A detail comprises a detail key and optional value.

2.3.1.18. Documentation
The Documentation syntax is an experimental syntactic sugar for a genmodel annotation.

It is likely to be replaced by a Javadoc-style comment that will be persisted in Ecore.

2.3.1.19. Constraints
The Constraints syntax supports the embedding of OCL expressions as invariants for classes, as
preconditions, postconditions or bodies for operations and initial or derived values for properties.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 30

The integration occurs through the SpecificationCS rule that invokes an ExpCS. (The alternative
UnquotedString is an implementation detail that supports the import from Ecore where the OCL is in
unparsed textual form rather than an analyzed syntax tree.)

A class invariant may be callable to specify that the Ecore representation is to use the EOperation
rather than EAnnotation representation.

A class invariant optionally supports a second OCL expression as a parenthesis on the invariant name.
This parenthesized expression is invoked when an invariant fails in order to provide a user-defined failure
message. Whether this message is an error or a warning is determined by the evaluation of the invariant:

2.3.1.20. Terminals
The OCLinEcore grammar extens the Esstial OCL grammar which should be consulted for definition
of INT, and ExpCS.

2.3.1.21. Names
An Unrestricted name is any name other than the OCL reserved keywords. See UnrestrictedName.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 31

An Unreserved name is any name other than the OCL reserved keywords above or the OCL reserved
types. See UnreservedName.

If you need to use any of these names or non-alphanumeric names, you must use the escaped string syntax
for a name: e.g. _'true'. The usual Java backslash escapes, with the exception of octal are supported:
_'new-lines\n\x0a\u000a'

2.3.1.22. Comments
Single line comments are supported by ignoring all text following --.

Multi line comments are supported by ignoring all text within /* ... */.

Documentation comments are supported for all text within /** ... */. Unfortunately no
documentation EAnnotation is currently created.

2.3.2. Limitations
OCLinEcore supports the full capabilities of Ecore, however the support for upper and lower bounds on
generic types has not been adequately tested.

OCLinEcore provides primary syntaxes for some Ecore conventions such as genmodel annotations and
constraints; much more support is needed for feature maps.

2.4. The Complete OCL Language
The Complete OCL provides a language for a document in which OCL complements an existing meta-
model with invariants, and additional features.

2.4.1. Syntax
The Complete OCL syntax is defined by the OMG OCL 2.4 specification.

The syntax comprises keywords such as context followed by appropriate names and punctuation and
OCL expressions.

With the exception of endpackage there is no terminating punctuation and so the consequences of a
syntax error can be quite far-reaching while editing a document. Concentrate on the first error.

A substantial example of Complete OCL may be found by installing the RoyalAndLoyal Example Project.

2.4.1.1. Grammar Implementation
The grammar used by the Xtext editors may be found at:

/src/org/eclipse/ocl/examples/xtext/completeocl/CompleteOCL.xtext

in the org.eclipse.ocl.xtext.completeocl plugin. The Complete OCL grammar extends the Essential OCL
grammar.

2.4.1.2. Complete OCL Document
The Document syntax defines a Complete OCL document, for which *.ocl is the default extension.

A Complete OCL document may

• import meta-models to be complemented

• include additional Complute OCL documents

• specify one or more Standard Library documents

and then provide complements for one of more Packages, Classifiers or Features.

The import, include and library declarations are Eclipse OCL extensions. The OCL 2.4 specification
provides no mechanism for a Complete OCL document to reference external material.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 32

The primary definitions of each meta-model may be imported by specifying the URI of a Package and
optionally an alias for that Package.

The import may be from a *.ecore, *.uml or *.oclinecore file.

Additional documents complementing meta-model may be included by specifying the URI of the
Complete OCL document.

Zero or more external libraries may be imported so that their definitions are merged to form a composite
library of basic and extended evaluation capability.

The implicit import of the default OCL Standard Library is suppressed, if any library is imported. The
default library may be extended by specifying it as the first library import.

library ocl : 'http://www.eclipse.org/ocl/3.1.0/OCL.oclstdlib'

The namespace URI of the first library package defines the namespace URI of the composite library. The
namespace URI of subsequent library imports may not conflict, but may be null.

2.4.1.3. PackageDeclaration
The PackageDeclaration syntax identifies a Package to be complemented.

The package keyword is followed by the optionally qualified name of the package to be complemented.

The name is followed by the declaration contexts to be complemented and finally an endpackage keyword.

2.4.1.4. ContextDecl
The ContextDecl syntax identifies a model element to be complemented.

A complemented context may be a

• Classifier Context

• Operation Context

• Property Context

2.4.1.5. ClassifierContextDecl
The ClassifierContextDecl syntax identifies a Classifier to be complemented.

The context keyword is followed by an optional declaration of the name of the context variable. If omitted
the context variable is named self.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 33

Then the optionally qualified name of the classifier to be complemented is defined. Qualification is
required if the classifier context is specified directly as part of the document. Qualification may be omitted
when the classifier context is specified as part of a package declaration.

Finally the content of the classifier context may comprise

• Def to define an additional feature

• Inv to define an invariant

2.4.1.6. Def
The Def syntax defines an additional Feature for a Classifier.

The definition may define a static feature with a feature name.

A further name may be specified for no very obvious purpose other than symmetry with an invariant.
The optional name is not used.

A parenthesized parameter list must be specified to define an operation and omitted for a property
definition.

Then the property or optional operation return type is specified followed by the specification of the
property initializer or operation body.

An additional definition is usable within an OCL expression as if it was defined in the complemented
meta-model. For the purposes of reflection the additional appear as part of the complemented meta-model,
however they remain complements and are not persisted with that meta-model.

2.4.1.7. Inv
The Inv syntax defines an invariant for a Classifier.

The inv keyword is followed by an optional invariant name an optional violation message and the
specification of the invariant.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 34

The optional name may be used by validation environments to identify the invariant in a control panel
and in diagnostic messages.

The optional violation message provides an OCL expression that may be used by a validation environment
to provide a custom message to explain a broken invariant. The severity of the invariant violationm may
be controlled by the value of the invariant expression.

• true indicates that the invariant was satisfied

• false indicates that the invariant was violated with warning severity

• null indicates that the invariant was violated with error severity

• invalid indicates that the invariant failed to evaluate

In the Indigo release, the local variables of the invariant are not accessible to the violation message
expression. This will be changed in a future release.

In the Indigo release, custom messages are available when a CompleteOCLEObjectValidator is used as
the EValidator. This is not the case for validation in the Sample Ecore Editor and so a default message
using the invariant name and the failing object is provided.

2.4.1.8. OperationContextDecl
The OperationContextDecl syntax identifies an Operation to be complemented.

The context keyword is followed by the optionally qualified name of the operation to be complemented.
Qualification is always required since the operation context may be specified as part of the document or
a package declaration but not a classifier.

The name is followed by a parenthesized parameter list.

Finally an optional return type and the operation constraints are specified. The operation constraints may
comprise

• a Body to define operation body

• Pre to define a precondition on the operation

• Post to define a postcondition on the operation

Any number of preconditions and postconditions can be specified. Only one body is permitted.

2.4.1.9. Parameter
The Parameter syntax identifies a Parameter of an Operation to be complemented.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 35

A parameter comprises an optional name and Essential OCL type declaration.

The parameter name may be omitted for Operation Contexts if the parameter name is not used by any
of the constraints.

The parameter name is required for Operation Definitions.

Note that the type declarations are Essential OCL types such as Sequence<String> rather than
UML’s and OCLinEcore’s String[*] {ordered !unique}. There are plans to unify these
syntaxes.

2.4.1.10. Body
The Body syntax defines the body for a complemented Operation.

The body keyword is followed by an optional name and the body specification.

The optional name is not used.

2.4.1.11. Post
The Post syntax defines a postcondition for a complemented Operation.

The post keyword is followed by an optional name and the postcondition specification.

The optional name may be used by a validation environment to identify a failing postcondition.

The Indigo release parses and persists postconditions but does not evaluate them.

2.4.1.12. Pre
The Pre syntax defines a precondition for a complemented Operation.

The pre keyword is followed by an optional name and the precondition specification.

The optional name may be used by a validation environment to identify a failing precondition.

The Indigo release parses and persists preconditions but does not evaluate them.

2.4.1.13. PropertyContextDecl
The PropertyContextDecl syntax identifies a Property to be complemented.

The context keyword is followed by the optionally qualified name of the property to be complemented.
Qualification is always required since the property context may be specified as part of the document or
a package declaration but not a classifier.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 36

Finally the property type and the property constraints are specified. The property constraints may
comprise

• an Init to specify an initialization

• a Der to specify a derivation

An initialization is specified to define the property value when the property is created.

A derivation is specified to define the property value at all times.

It does not therefore make sense to specify both an an initial and an all-time value. If both are specified
the derivation is used.

2.4.1.14. Init
The Init syntax defines an initial value for a complemented Property.

The init keyword and colon are followed by the initial value specification.

2.4.1.15. Der
The Der syntax defines a derived value for a complemented Property.

The der keyword and colon are followed by the derived value specification.

2.4.1.16. Specification
The Specification syntax provides an OCL expression to specify some aspect of a complemented model.

The specification comprises and Essential OCL Expression.

2.4.1.17. NavigatingExp
The NavigatingExp syntax defines enhancements to the Essential OCL NavigatingExp syntax.

The name of a model element may have a further @pre qualification for use within an operation
postcondition. It allows the postcondition to access the value on entry to an operation.

? may be specified as the argument in a navigating expression to indicate unknown values when testing
sent messages.

2.4.1.18. NavigationOperators
The Essential OCL NavigationOperators are extended to support

• ^ to test whether a message has been sent message

• ^^ to reference the content of a message

2.4.1.19. UnreservedName
The Complete OCL reserved words are unchanged from Essential OCL, consequently a Complete OCL
Unreserved name is the same as an Essential OCL UnreservedName.

2.4.1.20. UnrestrictedName
The Complete OCL has two additional built-in types: OclMessage and OclState. These names and
the Essential OCL RestrictedNames are not available without qualification or escaping.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 37

2.5. The OCL Standard Library Language
The OCL Standard Library Language is used to define the OCL Standard Library, for which *.oclstdlib
is the default extension.

The standard library can be replaced or extended.

The source for the OCL Standard Library may be found at model/OCL-2.5.oclstdlib in the
org.eclipse.ocl.pivot plugin.

2.5.1. Syntax

2.5.1.1. Grammar Implementation
The grammar used by the Xtext editors may be found at:

/src/org/eclipse/ocl/examples/xtext/oclstdlib/OCLstdlib.xtext

in the org.eclipse.ocl.xtext.oclstdlib plugin. The OCL Standard Library grammar extends the Essential
OCL grammar.

2.5.1.2. OCL Standard Library Document
The Library syntax defines an OCL Standard Library document, for which *.oclstdlib is the default
extension.

Zero or more library documents may be imported for use within the composite library whose name must
be specified.

A namespace prefix and namespace URI may optionally be specified.

The body of the document comprises

• optional module declaration

• optional specification of the OCL Standard libraries

• optional import of referenced Ecore or UML or OCLinEcore resources

• Precedences

• a hierarchy of Packages

• a hierarchy of Classifiers

• Annotations

Zero or more external libraries may be imported so that their definitions are merged to form a composite
library of basic and extended evaluation capability.

The default library may be extended by specifying it as the first library import.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 38

library 'http://www.eclipse.org/ocl/3.1.0/OCL.oclstdlib'

The namespace URI of the first library package defines the namespace URI of the composite library. The
namespace URI of subsequent library imports may not conflict, but may be null.

2.5.1.3. Precedence
The Precedence syntax defines the precedence and associativity of infix operators.

Each entry in a list of precedences names a precedence level taht can then be used by an infix operator.
Each level can be either left or right associative.

Multiple lists of precedence levels can be merged from imported libraries provided the lists are
interleaveable with conflict or ambiguity.

2.5.1.4. Package
The Package syntax defines a nested hierarchy of packages and classifiers .

A Package has a name and optionally a namespace prefix and namespace URI.

The content of a Package may comprise Packages, Classifiers and Annotations.

2.5.1.5. Class and Classifier
The Class and Classifier syntax define a type within a Package.

A Class has a name and optionally template parameters. A class may also name the metatype such as
PrimitiveType that the Class is an instance of.

A Class may extend one or more other Classes that may be specialized using the template parameters.

The content of a Class may comprise Operations, Properties, Invariants and Annotations.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 39

2.5.1.6. Inv
The Inv syntax defines an invariant constraint.

2.5.1.7. Operation
The general Operation syntax defines a conventional Operation or Iteration.

2.5.1.8. LibOperation
The LibOperation syntax defines a conventional Operation.

An Operation may be static and has a name and optionally template parameters.

An Operation has zero of more Parameters.

An Operation has a return Type. An infix operation may specify a precedence level. An operation
may specify the name of a Java class implementing the org.eclipse.ocl.pivot.library.LibraryOperation
interface. This class is used when evaluating the operation.

The content of an Operation may comprise Preconditions, Postconditions and Annotations.

The static qualifier supports declaration of static library operations such as allInstances() that
are invoked on types rather than objects.

2.5.1.9. LibIteration
The LibIteration syntax defines an Iteration.

An Iteration has a name and optionally template parameters.

An Iteration has one or more comma-separated Iterators.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 40

Optionally following a semicolon, an Iteration has one or more comma-separated Accumulators.

Optionally following a bar, an Iteration has one or more comma-separated Parameters.

An Iteration has a return Type. An Iteration may specify the name of a Java class implementing the
org.eclipse.ocl.pivot.library.LibraryIteration interface. This class is used when evaluating the iteration.

The content of an Iteration may comprise Preconditions, Postconditions and Annotations.

2.5.1.10. Iterator
The Iterator syntax defines an Iterator.

2.5.1.11. Accumulator
The Accumulator syntax defines an Accumulator.

2.5.1.12. Parameter
The Parameter syntax defines a Parameter.

2.5.1.13. Pre
The Pre syntax defines a precondition constraint.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 41

2.5.1.14. Post
The Post syntax defines a postcondition constraint.

2.5.1.15. LibProperty
The LibProperty syntax defines an Property.

An Property may be static and has a name and a Type.

A Property may specify the name of a Java class implementing the
org.eclipse.ocl.pivot.library.LibraryProperty interface. This class is used when evaluating the iteration.

The content of a Property may comprise Annotations.

2.5.1.16. Specification
The Specification syntax integrates an OCL Expression as the specification of a constraint.

2.6. Editors
The four editors are all generated using Xtext, and so exhibit similar behavior to other Eclipse editors.

The standard facilities are

• syntax coloring

• folding

• outline view

• hover text

• syntax validation

• semantic validation

The following facilities have partial functionality

• go to definition

• content assist

• templates

• quick fixes

• find references

The following facilities have little or no functionality

• rename element

• final validation

2.6.1. Syntax coloring
The editors use similar colors to JDT.

• green for comments

• bold purple for keywords

• grey for numbers

../../org.eclipse.xtext.doc/contents/xtext.html

Users Guide

Eclipse OCL 2020-06 (6.12.0) 42

• blue for strings

Additionally

• italics for text referencing a definition

References for which the name of the definition matches a keyword use italics in the same way as other
cross references. Names of a definition matching a keyword use bold purple in the same way as keywords.

The syntax coloring may be changed using the Window->Preferences->OCL pages.

2.6.2. Validation
Syntax errors are detected and offending text is underlined with accompanying annotations and problem
markers.

If there are no syntax errors, semantic validation is performed with similar feedback of problems.
Semantic validation is not performed when there are syntax errors since a single syntax error may provoke
many hundreds of semantic errors. These can make the original syntax error difficult to resolve.

The use of the well-formedness rules for a final validation of the Abstract Syntax is only partially
implemented, since correction of the OCL in the OMG specifiucation is still work in progress.

By default, the Xtext nature is not added to projects using OCL editors and so no builder runs in the
background creating problem markers for OCL files. This is generally beneficial when you have many
files for which the over-enthusiastic rebuilds waste build time, or experimental files for which the many
errors clutter the Problem View.

If your OCL is good quality, you may activate the Xtext nature and builder by selecting the project and
then invoking Configure->Add Xtext Nature.

2.6.3. Hover Text
Hover text has been implemented to provide feedback on the usage and type of expression terms. For
instance hovering over the size operation in the example below reveals that it is an Operation for the
Loan specialization of Collection .

(Note that the Class specialization for Loan is incorrectly shown again as an Operation specialization.)

2.6.4. Content Assist
Typing Ctrl and Space activates the Content Assist pop-up to offer suggestions as to what might be typed
to the right of the cursor.

2.6.5. Code Templates
Code templates are provided for many of the major constructs and some expression elements.

You may define your own templates. If you would like to contribute them, please raise a Bugzilla.

2.6.6. Open Declaration
It is possible to navigate to a definition provided an editor is already open for the definition.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 43

2.7. OCL Nature and Builder Auto-Validation
The build of an OCL or OCL-containing source file validates the ource file and updates markers in the
Problems View to identify issues that the user may care to address. Double-clicking on the Problems
View Marker opens an editor to faciltate fixing the problem.

The build validation occurs whenever a source file changes or is ‘cleaned’ and when the containing project
has the OCL nature configured.

If the Eclipse Workspace is configured to auto-build, the OCL builder runs automatically and so auto-
validation occurs.

2.7.1. Configuring the OCL Nature and Builder
The OCL Nature may be added or removed from a Project by selecting the project in an Explorer View
and invoking Configure->Convert to OCL Project or Configure->Unconfigure OCL from the context
menu. Alternatively the new Project Natures page may be used from the Project Properties page.

Configuing the OCL nature modifies the .project file to add the org.eclipse.ocl.pivot.ui.oclnature nature
and org.eclipse.ocl.pivot.ui.oclbuilder. The builder has an argument dictionaries to select file extensions
and file paths that are included or excluded by the builder.

<arguments>
 <dictionary>
 <key>disabledExtensions</key>
 <value>*,essentialocl</value>
 </dictionary>
 <dictionary>
 <key>disabledPaths</key>
 <value>bin/**,target/**</value>
 </dictionary>
 <dictionary>
 <key>enabledExtensions</key>
 <value>ecore,ocl,oclinecore,oclstdlib,uml</value>
 </dictionary>
 <dictionary>
 <key>enabledPaths</key>
 <value>**</value>
 </dictionary>
</arguments>

The default configuration enables validation of ecore,ocl,oclinecore,oclstdlib,uml extensions and
disables all other extensions, redundantly adding an explicit essentialocl exclusion to make the syntax
more obvious to a casual reader. (*.essentialocl files may contain a single OCL expression, but since they
lack any embedding within a model, they are not generally useful.)

The default configuration enables all paths except the bin and target paths where the Java builder or
Maven builders may place copies of files that are not usually worth revalidating as distinct files.

The configuration in the .project file may be edited with a text editor; there is currently no dedicated
user interface.

2.7.2. Ecore and UML Auto-Validation
The EMF and UML projects provide no nature or builder and so Problems View markers for *.ecore
and *.uml files are dependent on the problems in the prevailing selection at the time of the preceding
manual validation.

Since OCL may be embedded with *.ecore or *.uml files, the OCL nature and builder provide the option
to auto-validate these files.

By default, your project has no OCL nature so no Ecore or UML auto-validation occurs.

If you choose to add the OCL nature, the default settings that enable *.ecore and *.uml auto-validation
apply. The Problems View markers resulting from auto-validation are updated after a file is saved; any
markers that the Ecore or UML editors created are replaced.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 44

If you find that the auto-validation of some *.ecore and *.uml causes problems, perhaps because the
reported errors are not a concern for your usage, you may edit the .project file configuration.

You may remove ecore and/or uml from the enabledExtensions to suppress Ecore and/or UML auto-
validation completely.

You may add individual files or file patterns to the disabledPaths to be more selective about disabling
auto-validation.

2.7.3. Building on pre-Photon / 2018 releases
The OCL builder and nature are new in the Eclipse OCL 2018 release (Photon). They comply with the
standard Eclipse idiom.

In earlier releases, the EMF idiom was followed whereby Problems View markers were created by their
save action of an appropriate editor. Problems in files that had not been saved were often not visible and
so diagnosis only occurred when some consuming application complained..

2.8. Console
There are two interactive OCL consoles that enable OCL expressions to be evaluated on a model.

The classic Interactive Console may be created by invoking OCL->Show OCL Console from the right
button menu of some model editors such as the Sample Ecore Model Editor. Alternatively the Console
view may be created by Window->Show View->Console followed by selecting Interactive OCL from
the Open Console pull-down in the Console View tool bar. See the OCLinEcore Tutorial for detailed
step-by-step pictures.

The Pivot Interactive Xtext Console may be similarly created by OCL->Show Xtext OCL Console
from the menu or Interactive Xtext OCL from the pull-down.

The two consoles should exhibit similar behaviors, however not all facilities of the classic console have
yet been reproduced on the new.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 45

The Console, shown in the bottom half of the figure, comprises a combined Title and Tool Bar, Results
Panel and Entry Panel.

2.8.1. Context Object Selection
Expressions are evaluated with respect to a context object self that has a corresponding metamodel
type. This object is defined by selecting any widget whose implementation is adaptable to an EObject.
Therefore selecting an EAttribute in the Sample Ecore Editor will make the selected EAttribute self and
EAttribute the metamodel type. In the figure selecting the Member named m1 in the Sample Reflective
Ecore Model Editor has made Member the select type of self and m1 the selected context object. For
the Pivot Console there is additional support to use selections from the Outline of an Xtext editor or
Variables View of the OCL Debugger as the context object.

The Pivot Console displays the selected object and type in the Console title.

The classic Console relies on the platform selection mechanism to show the selected object in the overall
Eclipse Status display at the bottom left of the workspace window. This display may be lost when the
selection is changed to a non-EObject selection.

2.8.2. Editing
The bottom panel supports entry and evaluation of a multi-line expression. The expression is evaluated
when Enter is entered.

The classic Console has hand-coded syntax highlighting and context assist that may be activated by typing
Ctrl + Space.

The Pivot Console uses the Xtext EssentialOCL editor and largely auto-generated syntax highlighting,
error indications, hover text, quick fixes and context assist that may be activated by typing Ctrl + Space.

The content assist for the Pivot Console has not yet been customized, so the classic Console content assist
is probably more comprehensive, however the Pivot Console shares the same library definitions as the
other editors and so is more consistent.

2.8.3. Editor Keys
The Page-Up and Page-Down keys may be used to scroll through the history of input commands enabling
previous commands to be re-used. Use of the Page keys is necessary since the input is potentially multi-
line and so Up and Down navigate over the multiple lines.

2.8.4. Results
The larger middle panel displays the results of each evaluation in a scrolling window.

2.8.5. Tool Bar

2.8.5.1. Ecore/UML binding
The classic Console provides a selection to determine whether the context object has a type defined by
an Ecore or UML metamodel. This selection is not required for the Pivot Console which automatically
converts Ecore or UML models to Pivot models.

2.8.5.2. M1/M2
The classic Console provides a selection to determine whether the selected metamodel binding is that for
objects (M2) or types (M1). This selection is not needed for the Pivot Console since the Pivot metamodel
is an instance of itself.

2.8.5.3. Clear Console
The standard clear console functionality clears the results pane.

2.8.5.4. Close Console
The standard close console functionality closes the current console.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 46

2.8.5.5. Debug
Starts the OCL Debugger using the current mouse selection as self and the text in the Console input as
the exopression to execute.

2.8.5.6. Load/Save an expression
The classic Console provides an ability to save and reload edited expressions as XMI files. The XMI is a
pragmatic Eclipse Ecore realisation of the OCL specification for which XMI interchange is not realisable.

The Pivot Console provides a similar ability to save and reload edited expressions as XMI files. The
XMI is a prototype that might evolve and be adopted by a future version of the OCL specification. This
functionality has not been properly tested.

2.9. Validity View (new in Luna)
The standard EMF validation capabilities provide a useful overview of problems:

• as markers in the source model,

• as markers in the Problems View,

• in Pop-up dialogs.

The Validity View provides a much more detailed view of the problems and so assists in debugging bad
models and/or bad constaints.

The Validity View may be shown by invoking OCL->Show Validity View from the right button menu
of some model editors such as the Sample Ecore Model Editor. Alternatively the Validity View view
may be created by Window->Show View->Other... OCL->Validity View.

The left-hand pane titled Model Elements provides a tree view of the Resources in a ResourceSet in a
similar fashion to the Sample Ecore Editor. However an additional child element (in blue italics) is added
for each constraint applicable to its parent element. Checkboxes enable or disable the element from re-
validations and JUnit-like status icons show the status of the most recent validation. Hovertext provides
further detail.

The right-hand pane titled Metamodel Constraints provides a tree view of the model hierarchies that
contribute constraints. An additional child element is added for each model element to which the
constraint applies.

The displays track the mouse selection in other views. Whenever the mouse selection can be resolved
to an EObject, that EObject’s ResourceSet populates the left hand pane and constraints affecting the left
hand pane populate the right hand pane. Tracking the mouse selection is quite expensive, and probably
irritating. It can be inhibited by pinning the view to the current selection.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 47

There is generally much too much detail if all elements and constraints are considered and so the view
provides many facilities to facilitate focusing on the interesting combinations.

2.9.1. View Tool Bar
The View Tool Bar is at the top and right of the view following the Validity View title. It provides
facilities common to both Model Elements and Metamodel Constraints.

2.9.1.1. Expand All
The plus icon causes the Model Elements and Metamodel Constraints to be fully expanded to display all
their contents. Beware that for large models this may result in slow screen updates.

2.9.1.2. Collapse All
The minus icon causes the Model Elements and Metamodel Constraints to collapse to display only their
top level elements.

2.9.1.3. Pin
The pin icon toggles the track current cursor selection. When unpinned, the default, any change in mouse
selection may cause recomputation of Model Elements and Metamodel Constraints contents. When
pinned the contents are stable.

2.9.1.4. Refresh
The double arrow icon causes the Model Elements and Metamodel Constraints to be recomputed. This
may be necessary for a metamodel change to be used.

2.9.1.5. Run
The white triangle in green circle icon runs a validation on all enabled model element/constraint
combinations updating the status indications for constraints in the left hand Model Element and model
elements in right hand Constraint pane.

2.9.1.6. Filter
The Filtering menu hides unwanted contributions to the display. Each of the validation result statuses
can be individually enabled.

• Show all errors

• Show all infos

• Show all failures

• Show all warnings

• Show all successes

By default none of the selections are enabled so everything is shown. As soon as a specific status is
enabled all display elements with other non-enabled statuses are hidden. Thus selecting just *Show all
warnings" hides error/info/failure/success results.

2.9.1.7. Save
The floppy disk icon supports export of the validation results.

The available export formats are extensible through the
org.eclipse.ocl.examples.emf.validation.validity.validity_exporter extension point.

The default exporters support

html
An HTML file summarising the results.

model
An XMI model conforming to validity.ecore containing all results with references to the model elements
and constraints.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 48

text
A text file summarising the results.

2.9.2. Model Elements Pane
The Model Elements Pane is the left hand pane of the Validity View.

It comprises a title and tool bar, text filter and scrollable tree of model elements and their constraints.

2.9.2.1. Model Elements Tool Bar
The Model Elements Tool Bar is at the top and right of the left hand pane following the Model Elements
title. It provides facilities specific to the Model Elements.

Expand All
The plus icon causes the Model Elements to be fully expanded to display all their contents. Beware that
for large models this may result in slow screen updates.

Collapse All
The minus icon causes the Model Elements to collapse to display only their top level elements.

Enable All
The tick icon causes all Model Elements to be enabled and so included in the next validation.

Disable All
The no-tick icon causes all Model Elements to be disabled and so excluded from the next validation.

Show/Hide disabled
The document icon with a query controls whether disabled Model Element selections are visible. A
diagonal strikethrough shows when selections are hidden.

By default disabled selections are hidden, which allows the unwanted root elements of large models to
be unchecked and so hidden before a slow attempt is made to display them.

2.9.2.2. Text Filter
The text filter takes a StringMatcher pattern that selects which elements are visible. The pattern may
contain

• a * to match zero or more characters

• a ? to match exactly one character

• a \ to escape the following character

2.9.2.3. Model Elements tree
The scrollable tree shows the containment hierarchy of all elements in the ResourceSet containing the
model element identified by the mouse selection.

The +/- collapse/expand icons preceding each element enable interesting elements to be shown and others
folded away.

Each element is preceded by a check box that enables its usage within the next validation run. All
elements may be enabled or disabled using the icons in the Model Elements Tool Bar. Enabling/disabling
individual elements enables/disables the element’s descendants and propagates a partial enable/disable
to the element’s ancestors.

The checkbox is followed by a validation status icon.

• tick for validation successful

• red cross for validation unsuccessful but incomplete

• blue cross for validation failure (incomplete)

• amber warning for a validation warning

• question mark for no validation performed

The status icon is followed by an element-specific icon identifying its type and label.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 49

Double-clicking a leaf Constraint in the left-hand pane makes the corresponding constraint and parent
model-element visible in the right-hand pane.

2.9.2.4. Model Elements Context Menu
The context menu in the model elements tree offers the following facilities in addition to those also
available in the toolbar.

Validate Selection
Revalidates all constraints applicable to the selected Model Element and its children.

Debug Single Enabled Selection
Launches the debugger for the selected Model Element and associated Constraint.

The entry is greyed out if more than one Constraint is selected, so the invocation should normally be
made from a leaf Constraint result.

Debug launching is only available for OCL constraints in Luna SR0.

Show in Editor
Opens an editor for the selected Model Element or Metamodel Constraint.

Opening is not available for all forms of constraint in Luna SR0.

2.9.3. Metamodel Constraints Pane
The Metamodel Constraints Pane is the right hand pane of the Validity View.

It comprises a title and tool bar, text filter and scrollable tree of metamodel constraints and the model
elements to which they apply.

2.9.3.1. Metamodel Constraints Tool Bar
The Metamodel Constraints Tool Bar is at the top and right of the right hand pane following the
Metamodel Constraints title. It provides facilities specific to the Metamodel Constraints.

Expand All
The plus icon causes the Metamodel Constraints to be fully expanded to display all their contents. Beware
that for large models this may result in slow screen updates.

Collapse All
The minus icon causes the Metamodel Constraints to collapse to display only their top level elements.

Enable All
The tick icon causes all Metamodel Constraints to be enabled and so included in the next validation.

Disable All
The no-tick icon causes all Metamodel Constraints to be disabled and so excluded from the next
validation.

Show/Hide disabled
The document icon with a query controls whether disabled Metamodel Constraints selections are visible.
A diagonal strikethrough shows when selections are hidden.

By default disabled selections are hidden, which allows the unwanted root elements of large metamodels
to be unchecked and so hidden before a slow attempt is made to display them.

2.9.3.2. Text Filter
The text filter takes a StringMatcher pattern that selects which elements are visible. The pattern may
contain

• a * to match zero or more characters

• a ? to match exactly one character

Users Guide

Eclipse OCL 2020-06 (6.12.0) 50

• a \ to escape the following character

2.9.3.3. Metamodel Constraints tree
The scrollable tree shows the containment hierarchy of all constraints applicable to model elements in
the ResourceSet containing the model element identified by the mouse selection.

The +/- collapse/expand icons preceding each element enable interesting elements to be shown and others
folded away.

Each element is preceded by a check box that enables its usage within the next validation run. All
elements may be enabled or disabled using the icons in the Model Elements Tool Bar. Enabling/disabling
individual elements enables/disables the element’s descendants and propagates a partial enable/disable
to the element’s ancestors.

The checkbox is followed by a validation status icon.

• tick for validation successful

• red cross for validation unsuccessful but incomplete

• blue cross for validation failure (incomplete)

• amber warning for a validation warning

• question mark for no validation performed

The status icon is followed by an element-specific icon identifying its type and label.

Double-clicking a leaf Model Element in the right-hand pane makes the corresponding Model Element
and parent Metamodel Constraint visible in the left-hand pane.

2.9.3.4. Metamodel Constraints Context Menu
The context menu in the metamodel constraints tree offers the following facilities in addition to those
also available in the toolbar.

Validate Selection
Revalidates all model elements applicable to the selected constraint and its children.

Debug Single Enabled Selection
Launches the debugger for the selected Model Element and associated Constraint.

The entry is greyed out if more than one Constraint is selected, so the invocation should normally be
made from a leaf Model Element result.

Debug launching is only available for OCL constraints in Luna SR0.

Show in Editor
Opens an editor for the selected Model Element or Metamodel Constraint.

Opening is not available for all forms of constraint in Luna SR0.

2.9.4. Constraint Locators
The constraints displayed in the right hand pane are located by constraint locators that are registered
with the org.eclipse.ocl.examples.emf.validation.validity.constraint_locator extension point. A constraint
locator implements org.eclipse.ocl.examples.emf.validation.validity.locator.ConstraintLocator or the
org.eclipse.ocl.examples.emf.validation.validity.ui.locator.ConstraintUILocator to define location,
presentation, execution and debug launching of a particular kind of constraint.

Constraint locators are associated with metamodel namespaces which are determined by the nsURI of the
EPackage that contains the EClass of a Model Element EObject. Constraint locators may be registered for
a particular metamodel namespace or for no namespace. Those registered for no namespace are activated
whenever a namespace is encountered for which no specific constraint locators are registered.

The following Constraint Locators are available by default.

2.9.4.1. org.eclipse.ocl.examples.emf.validation.validity.locator.EClassConstraintLocator
This constraint locator supports discovery of constraints realized by invariant EOperations in the Java
code generated by an EMF genmodel.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 51

2.9.4.2. org.eclipse.ocl.examples.emf.validation.validity.locator.EValidatorConstraintLocator
This constraint locator supports reflective discovery of validateXXXX methods in the Java code
generated by an EMF genmodel using the EValidatorRegistry to identify the relevant Java code.

2.9.4.3. org.eclipse.ocl.examples.validity.locator.DelegateUIConstraintLocator
This constraint locator supports OCL constraints represented as EAnnotations in Ecore metamodels.

2.9.4.4. org.eclipse.ocl.examples.validity.locator.PivotUIConstraintLocator
This constraint locator supports discovery of org.eclipse.ocl.pivot.Constraint classes in Pivot
metamodels.

2.9.4.5. org.eclipse.ocl.examples.validity.locator.UMLUIConstraintLocator
This constraint locator supports discovery of org.eclipse.uml2.uml.Constraint classes in UML
metamodels.

2.10. Debugger (new in Luna)
The OCL debugger supports debugging OCL constraints. It is a customization of the standard Eclipse
debugger and so most of the facilities should be familiar to users of the Eclipse Java debugger.

The screenshot shows

• Debug Stack Trace showing the context of nested evaluation environments

• Variables View showing intermediate and local variables

• Editor showing input and context after a couple of steps

• Outline showing the Concrete Syntax Tree context

The OCL Debugger is very new, there are no doubt many opportunities for ergonomic improvements and
bug fixes. Please raise a Bugzilla .

2.10.1. Launching
Launching the debugger for an OCL constraint requires the user to provide two pieces of information

• the expression or constraint to evaluate

http://bugs.eclipse.org/bugs/enter_bug.cgi?product=MDT.OCL

Users Guide

Eclipse OCL 2020-06 (6.12.0) 52

• the self object upon which to operate

These may be provided in a variety of ways

2.10.1.1. Selected model object and manually entered expression
An arbitrary OCL expression may be entered in the Xtext OCL Console and evaluated on a model object
selected using a mouse selection. The Debugger is invoked from the debug icon on the Console Tool Bar.

Clicking the debug icon creates a dummy Complete OCL file and then launches the debugger. The
expression is encapsulated as an oclDebugExpression operation extension to the type of the selected
object. The file provides the source for source level debugging. The console may be re-used while
debugging.

2.10.1.2. Selected model object/constraint combination
The Validity View provides fine-grained display of the evaluation of each constraint applicable to a model
element and vice-versa. One of these model element/constraint combinations may be selected and the
debugger launched using Debug Single Enabled Selection to investigate why validation is producing
unexpected results.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 53

2.10.1.3. Selected model object and selected constraint
An OCL Expression launch configuration may be created to select a model element and a constraint for
execution or debugging.

The launch configuration may be created using Run->Run Configurations... or Debug->Debug
Configurations... from the Eclipse Menu Bar. This requires both Model Element and Constraint to be
selected separately.

Alternatively the context menu in model editors offers an OCL->Debug... option that creates a Debug
Configuration in which the Model Element is pre-selected from the invoking context.

2.10.2. Stepping
OCL expressions can be very compact and generally occur embedded in a larger application. The
debugger is therefore optimized for this usage.

Rather than the line-based stepping typical of the Java debugger, the OCL debugger supports term by term
stepping, highlighting the next term to be evaluated and showing the intermediate results as $-prefixed
names in the Variables View.

The OCL debugger interpretation of the Step functionalities is adjusted to facilitate stepping to many
points in a complex expression without needing to reformat the source with line breaks..

The Example Debugger View shows the imminent execution of “.size()” after stepping into “self” and
“.name”.

2.10.2.1. Step Into
A single OCL AST node is executed. The results can be inspected as inputs of a subsequent AST node.

2.10.2.2. Step Over
Execution proceeds until the next OCL AST node is associated with a new source line number.

2.10.2.3. Step Return
Execution proceeds until the next OCL AST node is associated with a reduced stack depth. Iterations
introduce nested stack entries so step return can step out of an iteration. let expressions and nested OCL
calls also introduce additional stack nesting.

2.10.2.4. Resume
Execution proceeds until the next breakpoint.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 54

2.10.3. Variables View
The Variables View enables the local variables and intermediate results to be examined using OCL
syntaxes such as single quotes for Strings.

The Example Debugger View shows the “self” variable, which is an “ecore::Package” instance, opened
to show its fields, amongst which the name is ‘tutorial’.

Intermediate variables are named using the property name of the subsequent AST node’s input. Thus
“$source” shows the OperationCallExp.source input already computed as “self.name”. Multiple inputs
are diasmbiguated by suffixing as in “$argument[0]”.

“$pc” identifies the next instruction, which can be examined in just the same way as any other variable.

2.10.4. Breakpoints View
Line breakpoints can be set in the Complete OCL editor and examined in the Breakpoints View. Execution
stops when an OCL AST node has been executed that is associated with the line of a breakpoint.

No filtering facilities are yet available.

2.10.5. Outline View
The Outline currently shows the OCL Concrete Syntax Tree which is structurally similar to the Abstract
Syntax Tree that is executed. .

It would be more useful to show the AST and support Node breakpoints on it.

2.11. OCL Integration
The OCLinEcore Editor editor enables OCL to be embedded in Ecore. This section explains how that
OCL is executed.

The Complete OCL editor enables OCL to be provided as a complementing document. This section
explains how that complement is installed to become part of the complemented model.

The Interactive OCL console allows you to load OCL and execute OCL expression interactively.

The Java API explains how you can take control of the OCL installation and activation.

2.11.1. OCL execution in Ecore / EMF Delegates
The EMF delegate mechanisms and EAnnotations that enable EMF to delegate to OCL to support

• validation of invariants

• execution of operation bodies

• evaluation of property initial and derived values

are described in the Delegates section of the Programmers Guide.

2.11.2. Custom Validation Messages
Eclipse OCL supports the production of custom messages by defining a String-valued message expression
as a parenthesized clause on an invariant.

2.11.2.1. Underlying support
An OCL invariant is an expression that returns a true or false value.

In Juno and Kepler, Eclipse OCL supported an extension whereby a null return indicated an ‘error’ rather
than a ‘warning’, and an invalid return was ‘fatal’.

Luna supports a rich-invariant idiom whereby an invariant can compute a tuple of results, only one of
which is actually returned by tooling that does not understand the idiom. Rather than

invariant InvariantName:
 boolean-valued-invariant-expression;

You can code additional information by recoding

ocl-status-expression

as

Users Guide

Eclipse OCL 2020-06 (6.12.0) 55

invariant InvariantName:
 Tuple{
 status=boolean-valued-invariant-expression,
 message=string-valued-message-expression,
 severity=integer-valued-severity-expression, -- -ve error,0 ok,+ve warn
 ... -- more custom fields as desired
 }.status;

The idiom is a little verbose, but compatible with all OCL tooling. Eclipse OCL provides some editor
enhancements to make the usage more acceptable.

2.11.2.2. Editor syntax
In the OCLinEcoreTutorial Example there is an alternative syntax for custom messages.

invariant SufficientCopies:
 library.loans->select((book = self))->size() <= copies;

may be changed to

invariant SufficientCopies('There are '
 + library.loans->select((book = self))->size().toString()
 + ' loans for the ' + copies.toString() + ' copies of \'' + name + '\''):
 library.loans->select((book = self))->size() <= copies;

to replace the default diagnostic:

The 'SufficientCopies' constraint is violated on 'Book b2'.

by

There are 3 loans for the 2 copies of 'b2'.

Unfortunately, in the Photon release, EMF does not support this customization. This must be activated
explicitly using an EValidator that is aware of the ValidationDelegateExtension extended API. This is
available by using the OCLinEcoreEObjectValidator.

2.11.3. CompleteOCL Validation
Integration of Complete OCL documents is harder because Complete OCL complements pre-existing
models. These cannot always be aware of the existence of that complement, since the author of a model
cannot know what complements may be added by its users.

The complete model formed from the primary models and the OCL complements is application-specific
and so applications must gather the contributions together. Prior to the Indigo release, this restricted
Complete OCL usage to Java applications that could gather the complements.

The CompleteOCLEObjectValidator may be used to install a Complete OCL document.

In many editors an OCL->Load Document is available in the context menu to facilitate loading a
complementary Complete OCL document.

You may drag and drop one or more files from within Eclipse or outside Eclipse into the dialog, or use
one of the browser buttons to locate a Complete OCL document.

2.11.3.1. Browse Registered OCL Files...
The org.eclipse.ocl.xtext.completeocl.complete_ocl_registry may be used to register Complete OCL files
against the nsURIs that they complement. These extension points may be defined in plugins or projects.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 56

In either case clicking Browse Registered OCL Files... presents a list of registered Complete OCL
documents applicable to the context from which the dialog was invoked.

2.11.3.2. Browse File System...
The Browse File System... button present a file system explorer so that a Complete OCL document file
can found anywhere.

2.11.3.3. Browse Workspace...
The Browse Workspace... button present a workspace explorer so that a Complete OCL document file
can found within the workspace.

2.11.4. OCLinEcore for Xtext Validation
If you want to use OCLinEcore as a validation language for Xtext you must:

Use a manually maintained Ecore model to define your parsed grammar model, otherwise your embedded
OCL will be lost each time you regenerate the editor. For non-trivial models, switching from auto-
generated to manual maintenance is a good idea, since you may need to control changes carefully to
maintain upward compatibility for existing models.

Modify the Validator class generated by genmodel to extend OCLinEcoreEObjectValidator rather than
EObjectValidator. See OCLinEcoreEObjectValidator for details.

2.11.5. Complete OCL for Xtext Validation
If you want to use Complete OCL as a validation language for Xtext, you may use the
CompleteOCLEObjectValidator to register the Complete OCL for EMF Validation. This may readily be
achieved by reusing the empty example JavaValidator created by Xtext to install the Complete OCL. If
your Xtext language is States, and your Complete OCL is model/States.ocl in StatesProject you should
change your StatesJavaValidator to:

public class StatesJavaValidator extends AbstractStatesJavaValidator
{
 @Override
 public void register(EValidatorRegistrar registrar) {
 super.register(registrar);
 StatesPackage ePackage = StatesPackage.eINSTANCE;
 URI oclURI = URI.createPlatformResourceURI(
 "/StatesProject/model/States.ocl", true);
 registrar.register(ePackage,
 new CompleteOCLEObjectValidator(ePackage, oclURI));
 }
}

2.12. OCL in UML (using Papyrus)
(This documentation applies to Papyrus 1.0.0.)

The behaviour of a UML model may be elaborated using OCL to define

• operation bodies

• property derivations/initializers

• class invariants to be observed by user model instances

• stereotype invariants to be observed by user model elements

• guards for state machines

2.12.1. UML Integration
Although the UML metamodel makes extensive use of OCL to specify its own well-formedness, there
is no explicit ability to use OCL within UML. Usage of OCL, or any other language, is enabled by the
flexibility of the ValueSpecification class and the OpaqueExpression extension.

The metamodel specifies the usage of a ValueSpecification wherever a value can sensibly be provided by
a variety of technologies. Simple values can be provided by, for instance, a LiteralString or LiteralInteger.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 57

More interesting values by an OpaqueExpression that has two interesting list features, one of language
names and the other of string bodies in the corresponding language. The lists provide an ability to provide
implementations in a variety of languages. In practice only one is used and if the language name is omitted,
an implementation default of OCL is assumed.

Specification of a behaviour such as “name.toUpper()” can be achieved by an OpaqueExpression in which
the language is Sequence(‘OCL’) and the body is Sequence(‘name.toUpper()’). The OCL is therefore
embedded in a textual form that has no knowledge of the classes in the OCL metamodel.

Users of the OCL Java API may avoid the need to incur OCL parsing costs by exploiting
OCL’s ExpressionInOCL class that extends ValueSpecification and delegates functionality to an
OCLExpression.

2.12.2. Class Diagram

2.12.2.1. Class Invariant
A class invariant specifies a constraint that must be true for all well-formed instances of the class. It is
specified in Papyrus, by:

• create a Constraint Node on a Class Diagram

• select Constraint on palette

• click on diagram where you want it

• click on the Class you want as the Constraint context

• optionally replace the auto-generated Constraint name

• select the Constraint

• type a new name in the Properties View

• define the Specification of the Constraint with OCL text

• select the Constraint

• type F2 (or click again) to open the Essential OCL editor

• enter the required constraint text

• click outside the editor to close

The «Context» link provides a graphical view of the Context selection in the Properties View. It is the
context that defines the type of OCL’s self and so defines what is constrained.

You may edit the OCL text using direct edit as described above or from The Properties View. (Note that
the editor has a significant start up time on the first usage, so be patient).

Users Guide

Eclipse OCL 2020-06 (6.12.0) 58

Your OCL text entry is validated automatically; an error or warning marker will be shown on the
Constraint if it is not satisfactory. Once you have corrected the errors you may need to invoke Validate-
>Model Tree to make the marker go away.

2.12.2.2. Operation Precondition, Postcondition and Body
Preconditions specify constraints that must be satisfied before operation execution starts.

Postconditions specify constraints that must be satisfied after operation execution finishes. Postconditions
may use the reserved parameter name result to refer to the one result permitted by OCL. The @pre
suffix may be used to refer to the state of variables prior to execution of the operation.

In OCL, a body-expression defines the functionality of a query operation as a result-type-valued
expression such as some-computation. In contrast in UML, a body-condition defines the
functionality of the operation as a Boolean-valued constraint on the result such as result = (some-
computation). Papyrus supports the OCL interpretation and so the result = (...) wrapper
may be omitted.

In Papyrus, once the operation has been defined, preconditions, postconditions and a body-condition are
all drawn by

• create a Constraint Node on a Class Diagram

• select Constraint on palette

• click on diagram where you want it

• type Esc since context links cannot be drawn to operations

• optionally replace the auto-generated Constraint name

• select the Constraint

• type a new name in the Properties View

• define the Constraint Context

• select the Operation

• use the appropriate Add Elements (+ icon) for Precondition or Postcondition, or the Body condition
... browser to locate the constraint

• define the Specification of the Constraint with OCL text

• select the Constraint

• type F2 (or click again) to open the Essential OCL editor

• enter the required constraint text

• click outside the editor to close

Note that the context of Operation Constraints must be specified by assigning a Constraint to one of the
precondition/postcondition/bodycondition roles. Assignment of the context of the constraint directly fails
to allocate the constraint to its role.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 59

Note that in Papyrus 1.0, there is no stereotype display to indicate the precondition/postcondition/body-
condition role.

Note that the OCL expressions for preconditions and postconditions should be Boolean-valued. The
result-valued body-expression form should be used for a body-condition.

The owning type of the Operation is used as OCL’s self context.

The Operation should be a query if a body-condition is provided.

In Luna, use of result within postconditions incorrectly reports an unknown property. The error can
be ignored.

2.12.2.3. Property Initializers
An OpaqueExpression whose value is an OCL expression string can be used to define the default or
derived value of a Property initializer.

• select the Property to make the Properties View relevant

• click the Create a new Object (+ icon) for the Default value

• Select OpaqueExpression from the menu

• click the Add elements (+ icon) for the Language

• select OCL in the left pane and click the right arrow to move to the right pane

• click OK

• enter the OCL text in the large pane

• click OK

Users Guide

Eclipse OCL 2020-06 (6.12.0) 60

Unfortunately, in Luna, the context does not appear to be correctly set for editor, so there is an error
on self and no syntax help.

2.12.2.4. Profile Constraint
A Profile Constraint is very similar to a Class Invariant. However since the Profile is Constraint is drawn
at M2, it may be evaluated at M1 to check a UML Class Diagram for consistency. In contrast a Class
Invariant drawn at M1, may be evaluated by user tooling at M0 to validate user models. It is specified
in Papyrus, by:

• create a Constraint Node on a Profile Diagram

• select Constraint on palette

• click on diagram where you want it

• click on the Stereotype you want as the Constraint context

• optionally replace the auto-generated Constraint name

• select the Constraint

• type a new name in the Properties View

• define the Specification of the Constraint with OCL text

• select the Constraint

• type F2 (or click again) to open the Essential OCL editor

• enter the required constraint text

• click outside the editor to close

The OCL text can also be edited within the Properties View.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 61

2.12.3. State Machine Diagram
The primary element of a StateMachine diagram is the StateMachine, which is a Type, but does not
normally have Properties. A StateMachine should therefore be defined as a nested type of a containing
type. This may be achieved within Papyrus Model Explorer by dragging the StateMachine to be a child
of a Class.

2.12.3.1. Statemachine Constraint
A Constraint may be applied to a Statemachine in the same way as for a Class to specify an invariant
of the Statemachine.

2.12.3.2. Statemachine Transition Guard
The guard condition of a Statemachine Transition may be specified by associating a Constraint with a
Transition. The Transition should already exist and the Statemachine should be a nested type of a suitable
type for OCL’s self. The guard condition is drawn in Papyrus by

• create a Constraint Node on a StateMachine Diagram

• select Constraint on palette

• click on diagram where you want it

• optionally enter the required constraint text

• type Esc to close editor

• optionally replace the auto-generated Constraint name

• select the Constraint, if not already selected

• type a new name in the Properties View

• define the Constraint Context

• select the Constraint, if not already selected

• use the Context ... browser in the Properties View to locate the transition

• define the Specification of the Constraint with OCL text

• select the Constraint, if not already selected

• type F2 (or click again) to open the Essential OCL editor

• enter the required constraint text

• click outside the editor to close

The required Transition is specified as the Guard of the Transition.

The owning type of the Statemachine defines OCL’s self. In the absence of an owning type self will
be undefined and OCL constraint validation will fail. You must therefore ensure that the StateMachine
has a Class parent and that the Class has the required properties; name for this example. Once Class and
properties are defined using a Class diagram. The

Users Guide

Eclipse OCL 2020-06 (6.12.0) 62

2.13. OCL Constraint Examples for UML (using
Papyrus)

(This documentation applies to Papyrus 3.0.0 and Eclipse Oxygen.)

The OCL in UML (using Papyrus) section shows how Papyrus may be used to create and maintain OCL
expressions that enrich a UML model or profile.

In this section we show how some simple and not so simple OCL examples can solve useful specification
problems.

OCL Constraints may be specified at any meta-level. A class-level defines the types and properties that
are used by the instance-level. The OCL constraints validate that the instances are compliant. The OCL
therefore executes on instances of the instance-level using the types and properties of the class-level.

A Constraint may be used just to document the design intent, but given an appropriate environment a
constraint may be tested and/or used to verify the consistency of models. This may be

• a test model defined by using UML InstanceSpecification to instantiate the UML model.

• a live model created by instantiating the Ecore equivalent of the UML model

• a UML model that conforms to a UML profile

In all cases when a validation of the model is requested, the validator attempts to execute each possible
constraint on each possible instance to which it applies. When executing the constraint, the validator binds
the self variable to the instance to be validated. The type of self is determined by the context of the
Constraint. In Papyrus this context is determined by the non-Constraint end of the <<context>> link
from Constraint. The result of evaluating a Constraint should true or false. If true, the constraint
is satisfied. If false the constraint is violated and some diagnostic should be shown to the user.

In Model Constraints, we provide examples that apply to the elements of UML model. The Constraints
are evaluated on the instances of the model. How violations are diagnosed depends on the synthesis of
model instances and the corresponding run-time environment.

In Profile Constraints, we provide examples that apply to the elements of a UML profile. The Constraints
are evaluated to verify consistent usage of the elements in the model. Violations are diagnosed within
the UML editor.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 63

2.13.1. Model Constraints

2.13.1.1. Simple Metamodel

The figure shows a metamodel specified in UML as a Papyrus Class Diagram. The upper half shows a
simple metamodel comprising just a Person class. A Person has a String-valued name and may
have a partner, parents and/or children.

Some constraints such as the parents[0..2] limitation on the the number of parents to 2 may
be specified directly using UML capabilities without any use of OCL. But many more challenging
restrictions require OCL constraints, for which five examples are provided in the lower half of the figure.

2.13.1.2. Scalar Constraints
To help understand the way in which OCL evaluates, it is helpful to consider some instances that conform
to the constrained model

The figure shows a model comprising three persons whose names are father, mother and baby.

The notation in the figure is similar to a UML Object Diagram. This should be drawable in Papyrus,
unfortunately a number of bugs prevent this in the Oxygen release of Papyrus. The notation deviates
slightly from UML by only underlining type name, and by using rounded rectangles to distinguish
DataType values from Class instances.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 64

The three instances of Person are shown as three rectangles, with an instance name such as pa and
underlined type Person. The three names are shown as rounded rectangles with values such as father
and type String. The association between a Person instance and their name is shown by a directed
link from the Person instance to the value. The link is labelled with the relationship role which is name.

The partner relationship role is similarly shown by a directed link from pa to ma and vice-versa.

NameIsAlphabetic

The simplest example constraint uses a regular expression to specify that the name must consist of just
alphabetic characters.

self.name.matches('[a-zA-Z]*')

The . is the OCL Object navigation operator. It separates a cascade of navigation steps each of which
returns a result value.

Evaluation starts at self, which rather like this in Java, is bound to an object whose type is the context
of the Constraint. The result is therefore a Person object such as pa.

The property navigation step name, traverses the relationship whose role is name. The navigation steps
from pa to the father value. The result is a String comprising father.

The operation call step matches('[a-zA-Z]*'), executes the regular expression matching function
using the provided regex. The final result is true or false.

NoSelfPartnership

Another very simple example constraint checks that the partner relationship does not have the same
Person as both its source and target.

self.partner <> self

The OCL comprises two navigation expressions separated by the infix <> operator.

The first, self.partner, navigates from self to compute a result comprising the partner of the
self context instance.

The second, self just returns the context instance.

The not-equals <> infix operator compares its preceding and following arguments and provides a true
result when the arguments are not-equal, false when equal.

2.13.1.3. Collection Constraints
The one-to-one relationships between objects and values have a simple implementation typically
involving a pointer. One-to-many and many-to-many relationships are more complex since a collection
of values is involved.

The figure above elaborates the earlier figure to show the to-many relationships. The figure also uses
a simpler representation of the object to value relationships by embedding each name value within
its Person instance. One-to-one object relationships such as partner are unaffected. To-many
relationships such as parents are shown using a multi-object drawn as three overlaid rectangles. Each
multi-object is typically a collection owned by the relationship source and shown by a solid arrow

Users Guide

Eclipse OCL 2020-06 (6.12.0) 65

labelled with the relationship name. Each element of the collection is identified by a dashed arrow.
child therefore has two parents; pa and ma. Many-to-many relationships are convently realized
as independent one-to-many relationships in each direction. The children opposite of parents is
therefore shown by a children multi-object for each parent identifying the one child.

When Ecore is used to implement UML, the multi-object is realized in exactly this way by an EList.

OCL provides an ability to use these multi-objects within expressions. The multi-object is a
Collection, or more specifically a Bag, OrderedSet, Sequence or Set depending on whether
the to-many-relationship is specified to be ordered and/or unique.

In OCL, -> is the collection navigation operator that enables an evaluation to exploit all the target objects.

EachChildHasTwoParents
Each child should have two parents, but in any finite model there must be some Person instances for
which the parents are omitted. Hence the model specifies a [0..2] multiplicity rather than precisely [2..2].
We may remedy this deficiency with an OCL constraint.

self.children->forAll(child | child.parents->size() = 2)

The self and children navigate from the context object to locate the collection of all children of the
context instance as the navigation result.

The -> collection operator and the subsequent forAll(child | ...) iteration cause an iteration
to be performed over the children, assigning each child in turn to the child iterator variable. The ...
iterator body is evaluated for each child and accumulated so that the result of the forAll is only true
if the body evaluation for each child is also true.

The iteration body navigates from each child to select the collection of all of its parents. Then
the -> collection navigation operator invokes the collection operation size() to compute the size of
the collection. This size is compared using the = (equals) operator to the constant 2. The iteration body
therefore returns false unless the number of parents is equal to 2.

This example can be written more compactly as

children->forAll(parents->size() = 2)

since an implicit iterator is the default source for navigation within an iteration body, and self is the
default outside.

AcyclicAncestry
The instances of a user model often form an acyclic graph. It is therefore desirable to specify this as an
OCL constraint so that any cycles are detected by an OCL model validator. This is fairly easy to specify
with the help of the OCL transitive closure iteration.

self.parents->closure(parent | parent.parents)->excludes(self)

Once again the self.parents navigation returns the collection of all parents of the context instance.
This collection is used as a seed from which the closure(parent | ...) collection iteration
grows the final result by repeatedly aggregating the result of the ... body evaluation. Each element of
the interim result is bound to the parent iterator until there are no values left in the result for which
the iteration body has not been evaluated.

The parent.parents iteration body just returns all parents of a given parent so that the closure
progressively aggregates the grandparents then great-grandparents, then ...

Once the closure completes, it returns a Set (or OrderedSet) of all ancestors which is passed to
the the excludes Collection operator to confirm that the self instance is not an ancestor of itself.

This example can be written more compactly as

parents->closure(parents)->excludes(self)

EachChildsParentsArePartners
A user model may not always allow arbitrary relationships between its instances. An OCL constraint can
impose discipline, and within a more complex OCL constraint one or more let-variables may provide
structure that aids readability.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 66

In our example we may wish to impose a requirement that the two parents of a child are partners.

let selfAndPartner = self.oclAsSet()->including(self.partner) in
self.children->forAll(child | selfAndPartner->includesAll(child.parents))

The let selfAndPartner ... in ... assigns the value of a first ... expression to the
selfAndPartner let-variable so that selfAndPartner can then be used in the evaluation of the
second ... expression that provides the final result. The let-variable allows a sub-computation to be re-
used many times, or just to be assigned to a readable name.

The let-variable is computed by first using self.oclAsSet() to compute a single element Set
containing self It then uses the collection operation including(self.partner) to compute
another set containing all (one) elements of the original set and also including another element. The result
is therefore a set of the two elements, self and self.partner.

As before self.children->forAll(child | ...) binds each child to the child iterator and
requires that the ... body evaluates to true for all values of child. The body verifies that the pair of
persons cached in the selfAndPartner includes each person identified by child.parents.

This example can be written more compactly as

let selfAndPartner = self->including(partner) in
children->forAll(selfAndPartner = parents)

The more compact form exploits an implicit invocation of oclAsSet() that occurs when a ->
collection navigation operator has a non-collection as its source.

Eliminating the explicit child iterator from the forAll iteration is permissible but perhaps
unwise since an occasional OCL user may struggle to understand whether the final parents is
self.parents or child.parents.

2.13.2. Profile Constraints
A UML Profile provides an ability to extend an existing metamodel by defining Stereotypes that may be
added to elements of the metamodel. The Ecore.profile.uml which annotates UML.uml to define
the Eclipse UML support is a good example of such usage. The contrived example here that extends a
single class metamodel would be much better realized by a new metamodel.

2.13.2.1. Example Profile
Our contrived example provides two forms of extension, Gender and Role intended for a Person
element, but since we are defining a profile we must define the extension for Person's metaclass which
is Class. We also define another extension, Vehicle, that is sensible for a Class but clearly stupid
for a Person.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 67

A Person may have a Gender defined as an abstract stereotype from which the concrete Male and
Female stereotypes derive.

A Person may have one or more Role's defined as an abstract stereotype from which the concrete
Astronaut and Priest stereotypes derive. A Priest provides an additional priesthood
enumeration property that identifies the religious affiliation of the priest.

These definitions are drawn as an extension link from a base stereotype such as Gender, to a
metaclass, such as Class. The link is a UML Extension that is a form of Association and
so has two automatically synthesized Property elements for its ends. The property role names
are derived by applying base_ or extension_ prefixes to the target class/metaclass names. The
base_Class property therefore identifies the Class metaclass end of the Extension, and the
extension_Gender identifies the Gender end.

The extension_ property has a multiplicity for which [0..1] specifies that at most one application
of the Gender stereotype is permissible. Alternatively a [0..*] multiplicity specifies that zero or more
applications of the Role stereotype are possible; a priest may also be an astronaut. Specification of
non-zero lowerbounds is possible but not generally appropriate since the application is to the metaclass.
Mandating that a Gender is always applied leads to stupidities if a completely independent class such
as an Road are also modeled.

The extension multiplicity provides a very limited imposition of design rules on the use of the stereotypes.
Generally much more complex rules requiring OCL constraints are required. Four examples are shown
and explained later.

(The Oxygen release of Papyrus provides a misleading editing interface for stereotype multiplicities. Use
only the advanced properties after selecting the extension in the Model Explorer View).

Users Guide

Eclipse OCL 2020-06 (6.12.0) 68

2.13.2.2. Example Profiled Model
The application of stereotypes is relatively straightforward and not the topic of this section. A profile is
applied to the model, so that its stereotypes can be applied to the elements.

Applied stereotypes are shown within guilemets. The example above shows definition of a derived
Person class named Priestess to which the Female and Priest stereotypes have been applied.
Not shown in the diagram, is the definition of the Priest::priesthood metaproperty with the
RABBI value.

The UML representation is deceptively simple and consequently rather confusing when writing OCL
constraints. We need to look at the equivalent object model that the OCL evaluation uses.

The figure shows just the Priestess class. In the centre, an instance of the Class metaclass is
instantiated as a Class named Priestess with the inherited String-valued Property named name.
Each Stereotype metaclass is instantiated as an element without a type specification. The elements
are named Priest and Female.

The type specification is missing because the UML specification has no primary need for the concept of
a stereotype instance. This omission leads to a complexity in the XMI serialization for UML. The omitted
type is indicated by the guilemets surrounding the names.

The relationships between Priestess and «Female» show the synthesized base_Class
and extension_Gender relationships. Note that it is extension_Gender rather than
extension_Female since the profile defined Gender as an extension of the Class metaclass.
Female is a derivation of the defined extension.

The relationships between Priestess and «Priest» are more complex since more than one Role
may be applied. The extension_Role therefore identifies a collection of zero or more Role's. The
example shows that the collection contains just the one «Priest» element.

We may now examine some example constraints to see how this model is used by constraint evaluation.

MaleOrFemale

A simple example constraint on an abstract «Gender» stereotype confirms that only one of the
«Female» or «Male» stereotypes is applied.

let gender = self.base_Class.extension_Gender in
gender.oclIsKindOf(Male) <> gender.oclIsKindOf(Female)

The navigation starts with self bound to a «Gender» instance since that is the «context» of the
Constraint definition. Navigation to base_Class locates the instance of Class to which the stereotype

Users Guide

Eclipse OCL 2020-06 (6.12.0) 69

is provided. The further navigation to extension_Gender locates a «Gender» instance for any
corresponding application of the stereotype. This instance is saved in the gender let-variable.

The subsequent operation navigation from gender using oclIsKindOf(Male) returns
true if gender is a Male stereotype instance, false otherwise. The similar test for
oclIsKindOf(Female) is compared so that the constraint is only true when the applied stereotypes
differ.

This Constraint is somewhat redundant since the at-most-one multiplicity on a «Gender» stereotype
inhibits any double application. The let-variable gender is therefore always the same as self. This
constraint can therefore be written more compactly as:

true

GenderIsRequired

A more useful constraint mandates that every non-abstract class to which a «Role» is applied also has
an application of the «Gender» stereotype.

not self.base_Class.isAbstract implies
self.base_Class.extension_Gender <> null

When this is evaluated for our single instance example model, evaluation starts with self bound to
the «Priest» stereotype instance since the «context» of the constraint definition is the Role from
which Priest derives.

self.base_Class navigates from the «Priest» stereotype instance to the Priestess class
instance, where the isAbstract navigation is used to test the UML::Class::isAbstract
property to determine whether Priestess is abstract or not.

The x implies y infix operator is often more readable that (not x) or y; it conveniently short-
circuits evaluation of a garbage second expression when the first expression is false. In this example
the subsequent evaluation is bypassed for instances of abstract classes.

The self.base_Class.extension_Gender navigates first to the Priestess class instance
and then on to a «Gender» stereotype instance. This navigation returns a non-null object if there is such
an instance, or null if there is not. The <> null comparison therefore returns true when a Gender
stereotype has been applied; or false when not-applied.

Note that the examples specify a relevant stereotype as the «context». It is possible to write an identical
constraint when the Class metaclass is specified as the «context».

not isAbstract implies
extension_Role->notEmpty() implies
extension_Gender <> null

However this is inefficient since it must be executed for all possible classes where it performs a double
test ‘any Role’ then ‘check Gender’. By defining the constraint on the Role, the first test is performed
for free. Redundant evaluations for e.g. Road elements are avoided. Of course a separate constraint that
Role should only be applied to Person may be desirable.

base_Class.oclIsKindOf(Person)

CatholicPriestsAreMale

Stronger constraints may mandate a business rule such as requiring that CATHOLIC priests are male.

self.priesthood = Priesthood::CATHOLIC implies
self.base_Class.extension_Gender.oclIsKindOf(Male)

The left hand side of the implies restricts the constraint to the case where the priesthood
meta-property has been assigned the CATHOLIC enumeration value. In our single class example, a
Priestess is assigned the value RABBI and so the test always fails. If a further CatholicPriest
class is defined, this constraint then becomes useful, since the right hand side of the implies expression
checks that the «Gender» stereotype instance is present and is a «Male» stereotype instance.

AtMostOnePriesthood

Since multiple «Role» stereotype instances are permitted, we may require a business rule to prohibit
the application of two Priest stereotypes.

self.base_Class.extension_Role->selectByKind(Priest)->size() = 1

Users Guide

Eclipse OCL 2020-06 (6.12.0) 70

As before self is a «Role» stereotype instance so that navigation to base_Class identifies the
Person class that has been stereotyped. The extension_Role identifies the collection of all applied
Role stereotypes since multiple applications are permitted.

The -> collection navigation operator and the collection operation selectByKind(Priest) returns
a filtered collection that selects only those stereotype instances that are, or derive from, the Priest
stereotype. The further -> collection navigation operator and the size() collection operation compute
the size of this collection. The constraint result is true if the size equals 1; false otherwise.

->notEmpty()

The ->notEmpty() collection navigation and operation is convenient to test whether one or more
applications of a stereotype are present.

self.base_Class.extension_Role->notEmpty()

It is not uncommon to see ->notEmpty() used when at most one application is possible.

self.base_Class.extension_Gender->notEmpty()

This is not wrong, but is slightly inefficient since it provokes the following automatic non-collection to
set conversion.

self.base_Class.extension_Gender.oclAsSet()->notEmpty()

It is more efficient to write

self.base_Class.extension_Gender <> null

2.14. User Interface
The user interface comprises

• Editors

• Console

• Debugger

• Validity View

• Workspace Preference Pages

• Project Property Pages

• OCL->Load Document Menu Action

2.14.1. Project Property Pages
The Project Property Pages are accessible by invoking Properties from the right button context menu
of a project.

In principle, it is possible to specify project-specific settings, however in practice is not often possible
for application code to determine the prevailing project. Project-specific properties are therefore often
ignored and may be removed in a future release.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 71

The Property pages are:

• Overall Options

• OCLinEcore editor Options

• Options applicable to the Ecore and UML bindings

• Options applicable to just the UML bindings

• The Model Registry

2.14.2. Workspace Preference Pages
The Workspace Preference Pages are accessible by invoking Preferences from the Window menu on
the toolbar.

The Preference pages are:

• Overall Options

• OCLinEcore editor Options

• Options applicable to the Ecore and UML bindings

• Options applicable to just the UML bindings

• Editor Syntax Coloring

• Editor Templates

2.14.3. Overall Options
The two overall options are independent of the Ecore/UML/Pivot bindings.

2.14.3.1. Default Delegation Mode
The Eclipse OCL project provides two execution engines which may be used to support EMF Delegates.

http://www.eclipse.org/emf/2002/Ecore/OCL/LPG
EMF Delegate annotations referencing the http://www.eclipse.org/emf/2002/Ecore/
OCL/LPG URI are serviced by the classic evaluator that uses the LPG parser.

This URI was introduced in the Indigo release.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 72

http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot
EMF Delegate annotations referencing the http://www.eclipse.org/emf/2002/Ecore/
OCL/Pivot URI are serviced by the new experimental evaluator that uses the UML-aligned Pivot
model.

This URI was introduced in the Indigo release and was imposed by the Indigo OCLinEcore editor.

http://www.eclipse.org/emf/2002/Ecore/OCL
EMF Delegate annotations referencing the http://www.eclipse.org/emf/2002/Ecore/OCL
URI are serviced by the evaluator selected on the preference page by the Default Delegation Mode.

This URI was introduced in the Helios release and was imposed by the Helios OCLinEcore editor.

Use of an Indigo or Juno editor converts the URI to use the Pivot evaluator.

In Kepler, a prevailing URI in the input file is preserved, unless changed by the context menu setting.
If no prevailing URI exists a default is determined by an OCLinEcore preference setting that defaults
to the Pivot evaluator.

2.14.3.2. Code Generation Mode
Juno introduced an experimental ability to replace the delegated interpreted execution of OCL by direct
execution of compiled Java code. This facility has been substantially improved and tested for the Kepler
release.

Optimisations for Luna included inlining the bodies directly into the EMF Impl classes.

Mars has useful fixes and benefits from safe navigation analyses.

Further optimisations are scheduled for future releases.

This option may be selected to change the realization of OCL option.

Delegate for interpretation at run-time
Selecting the default delegation mode retains the Helios and Indigo functionality whereby genmodel
generates Java code that encodes the OCL expressions as text strings. Each expression is lazily compiled
at run-time with the result being cached to reduce overheads for repeated execution.

Generate Java code in xxxBodies classes
Selecting Java code generation causes genmodel to run Xtend templates that generate

• a Package Tables.java file

• inline OCL implementations within the Class Impl.java files

The tables file contains an optimised model representation allowing polymorphic operations to be
dispatched in constant time.

The implementation files contain Java code corresponding to each OCL expression defining operation
bodies or property initializers.

Disclaimer: the generated code is experimental has yet to be optimized and so is only about five times
faster than the interpreted execution.

2.14.4. Ecore and UML Options
The options for the Ecore and UML bindings.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 73

2.14.5. UML Options
The options for the UML binding.

2.14.6. Model Registry
The Model Registry is now deprecated.

2.14.7. Syntax Coloring
The standard Xtext syntax coloring facilities are provided for each of the OCL editors.

2.14.8. Editor Templates
The standard Xtext editor template facilities are provided for each of the OCL editors.

Users Guide

Eclipse OCL 2020-06 (6.12.0) 74

2.14.9. OCLinEcore Options
The options for the OCLinEcore editor.

OCL embedded in Ecore can be executed with either the Classic evaluator or the new Pivot evaluator
depending on the URI used to define the embedded EAnnotations. This preference determines the URI
written to Ecore files when no URI was previously in use.

Selecting http://www.eclipse.org/emf/2002/Ecore/OCL makes no choice and so defers
to the user’s run-time delegation choice.

Selecting http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot is recommended since
the OCLinEcore editor and Pivot evaluator both use the Xtext parser. This should avoid problems whereby
not all facilities of the new Pivot grammar are supported by the Classic grammic or LPG evaluator.

Selecting http://www.eclipse.org/emf/2002/Ecore/OCL/LPG may be appropriate if
evaluation using the classic LPG evaluator is important.

Eclipse OCL 2020-06 (6.12.0) 75

Chapter 3. The OCL Standard Library
This documentation on the OCL Standard Library is auto-generated from the org.eclipse.ocl.pivot/model/
OCL-2.5.oclstdlib that defines the behaviour of the Pivot evaluator and the Xtext editors. It is similar to
the OCL 2.4 functionality. It is a prototype of functionality for OCL 2.5 where the use of models may
eliminate ambiguities.

The library support for the Ecore and UML bindings in Luna has been upgraded so that the available
operations are similar to those documented here for the Pivot binding.

3.1. Precedences
NAVIGATION > UNARY > MULTIPLICATIVE > ADDITIVE > RELATIONAL > EQUALITY > AND
> OR > XOR > IMPLIES

3.2. Bag(T)
A bag is a collection with duplicates allowed. That is, one object can be an element of a bag many times.
There is no ordering defined on the elements in a bag. Bag is itself an instance of the metatype BagType.

conformsTo Collection(T)

Operations

=(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

True if self and bag contain the same elements, the same number of times.

<>(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

excluding(object : OclAny[?]) : Bag(T)

The bag containing all elements of self apart from all occurrences of object.

excludingAll(objects : Collection(OclAny)) : Bag(T)

The bag containing all elements of self apart from all occurrences of all objects.

flatten(T2)() : Bag(T2)

Redefines the Collection operation. If the element type is not a collection type, this results in the same
bag as self. If the element type is a collection type, the result is the bag containing all the elements of
all the recursively flattened elements of self.

including(object : T[?]) : Bag(T)

The bag containing all elements of self plus object.

includingAll(objects : Collection(T)) : Bag(T)

The bag containing all elements of self and objects.

selectByKind(TT)(type : TT[?]) : Bag(TT)

selectByType(TT)(type : TT[?]) : Bag(TT)

Iterations

closure(i : T[1] | lambda : Lambda T() : Set(T)[?]) : Set(T)

The closure of applying body transitively to every distinct element of the source collection.

collect(V)(i : T[?] | lambda : Lambda T() : V[?]) : Bag(V)

collectNested(V)(i : T[?] | lambda : Lambda T() : V[?]) : Bag(V)

The Bag of elements which results from applying body to every member of the source nonordered
collection.

reject(i : T[?] | lambda : Lambda T() : Boolean[1]) : Bag(T)

The sub-bag of the source bag for which body is false.

self->reject(iterator | body) = self->select(iterator | not body)

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 76

.

select(i : T[?] | lambda : Lambda T() : Boolean[1]) : Bag(T)

The sub-bag of the source bag for which body is true.

self->select(iterator | body) =
self->iterate(iterator; result : Bag(T) = Bag{} |
if body then result->including(iterator)
else result
endif)

sortedBy(i : T[?] | lambda : Lambda T() : OclAny[?]) : Sequence(T)

Results in the Sequence containing all elements of the source collection. The element for which body has
the lowest value comes first, and so on. The type of the body expression must have the < operation defined.
The < operation must return a Boolean value and must be transitive (i.e., if a < b and b < c then a < c).

3.3. Boolean
The standard type Boolean represents the common true/false values. Boolean is itself an instance of the
metatype PrimitiveType (from UML).

conformsTo OclAny

Operations

=(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

Returns true if the logical value of self is the same as the numeric value of object2, false otherwise.

<>(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

Returns true if the logical value of self is the not same as the numeric value of object2, false
otherwise.

allInstances() : Set(OclSelf)

Returns Set{false, true}.

and(b : Boolean[?]) : Boolean[?] invalidating validating precedence: AND

false if either self or b is false. Otherwise invalid if either self or b is invalid . Otherwise
null if either self or b is null. Otherwise true.

body: if self.oclIsInvalid() then
 if b.oclIsInvalid() then self
 elseif b = false then false
 else self
 endif
 elseif self = false then false
 elseif b.oclIsInvalid() then b
 elseif b = false then false
 elseif self = null then null
 elseif b = null then null
 else true
 endif

and2(b : Boolean[?]) : Boolean[?]

false if either self or b is false. Otherwise true.

body: if self = false then false
 elseif b = false then false
 else true
 endif

implies(b : Boolean[?]) : Boolean[?] invalidating validating precedence:
IMPLIES

true if self is false, or if b is true. Otherwise invalid if either self or b is invalid.
Otherwise null if either self or b is null. Otherwise false.

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 77

body: if self.oclIsInvalid() then
 if b.oclIsInvalid() then self
 elseif b = true then true
 else self
 endif
 elseif self = false then true
 elseif b.oclIsInvalid() then b
 elseif b = true then true
 elseif self = null then null
 elseif b = null then b
 else false
 endif

implies2(b : Boolean[?]) : Boolean[?]

true if self is false, or if b is true. Otherwise false.

body: if self = false then true
 elseif b = true then true
 else false
 endif

not() : Boolean[?] validating precedence: UNARY

true if self is false. false if self is true. null if self is null. Otherwise invalid.

body: if self.oclIsInvalid() then self
 elseif self = null then null
 else self = false
 endif

not2() : Boolean[1]

true if self is false. Otherwise false.

body: if self then false else true endif

or(b : Boolean[?]) : Boolean[?] invalidating validating precedence: OR

true if either self or b is true. Otherwise invalid if either self or b is invalid. Otherwise
null if either self or b is null. Otherwise false.

body: if self.oclIsInvalid() then
 if b.oclIsInvalid() then self
 elseif b = true then true
 else self
 endif
 elseif self = true then true
 elseif b.oclIsInvalid() then b
 elseif b = true then true
 elseif self = null then null
 elseif b = null then null
 else false
 endif

or2(b : Boolean[?]) : Boolean[?]

true if either self or b is true. Otherwise false.

body: if self = true then true
 elseif b = true then true
 else false
 endif

toString() : String[1]

Converts self to a string value.

xor(b : Boolean[?]) : Boolean[?] precedence: XOR

true if self is true and b is false, or if self is false and b is true. false if self is true
and b is true, or if self is false and b is false. Otherwise invalid if either self or b is
invalid. Otherwise null.

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 78

body: if self.oclIsInvalid() then self
 elseif b.oclIsInvalid() then b
 elseif self = null then null
 elseif b = null then null
 else self <> b
 endif

xor2(b : Boolean[?]) : Boolean[?]

true if self <> b Otherwise false.

body: self <> b

3.4. Class
conformsTo OclAny

3.5. Collection(T)
Collection is the abstract supertype of all collection types in the OCL Standard Library. Each occurrence
of an object in a collection is called an element. If an object occurs twice in a collection, there are two
elements.

This sub clause defines the properties on Collections that have identical semantics for all collection
subtypes. Some operations may be defined within the subtype as well, which means that there is an
additional postcondition or a more specialized return value. Collection is itself an instance of the metatype
CollectionType.

The definition of several common operations is different for each subtype. These operations are not
mentioned in this sub clause.

The semantics of the collection operations is given in the form of a postcondition that uses the IterateExp
of the IteratorExp construct. The semantics of those constructs is defined in Clause 10 (“Semantics
Described using UML”). In several cases the postcondition refers to other collection operations, which
in turn are defined in terms of the IterateExp or IteratorExp constructs.

Well-formedness rules
A collection cannot contain invalid values.

context Collection inv: self->forAll(not oclIsInvalid())

conformsTo OclAny

Attributes

lower : Integer[1]

Evaluates to the lower bound on the number of collection elements.

upper : Integer[1]

Evaluates to the upper bound on the number of collection elements.

Associations

elementType : T[1]

Evaluates to the type of the collection elements.

Operations

=(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

True if c is a collection of the same kind as self and contains the same elements in the same quantities
and in the same order, in the case of an ordered collection type.

<>(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

True if c is not equal to self.

asBag() : Bag(T)

The Bag that contains all the elements from self.

asOrderedSet() : OrderedSet(T)

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 79

An OrderedSet that contains all the elements from self, with duplicates removed, in an order dependent
on the particular concrete collection type.

asSequence() : Sequence(T)

A Sequence that contains all the elements from self, in an order dependent on the particular concrete
collection type.

asSet() : Set(T)

The Set containing all the elements from self, with duplicates removed.

count(object : OclAny[?]) : Integer[1]

The number of times that object occurs in the collection self.

excludes(object : OclAny[?]) : Boolean[1]

True if object is not an element of self, false otherwise.

excludesAll(T2)(c2 : Collection(T2)) : Boolean[1]

Does self contain none of the elements of c2 ?

excluding(object : OclAny[?]) : Collection(T)

The collection containing all elements of self apart from object.

excludingAll(objects : Collection(OclAny)) : Collection(T)

The collection containing all elements of self apart from all occurrences of all objects.

flatten(T2)() : Collection(T2)

If the element type is not a collection type, this results in the same collection as self. If the element type
is a collection type, the result is a collection containing all the elements of all the recursively flattened
elements of self.

includes(object : OclAny[?]) : Boolean[1]

True if object is an element of self, false otherwise.

includesAll(T2)(c2 : Collection(T2)) : Boolean[1]

Does self contain all the elements of c2 ?

including(object : T[?]) : Collection(T)

The collection containing all elements of self plus object.

includingAll(objects : Collection(T)) : Collection(T)

The collection containing all elements of self and objects.

intersection(u : UniqueCollection(T)) : Set(T)

The intersection of self and a unique collection; the set of all elements that are in both self and u.

intersection(c : Collection(T)) : Bag(T)

The intersection of self and bag; the bag of all elements that are in both self and c.

isEmpty() : Boolean[1]

Is self the empty collection?

Note: null->isEmpty() returns true in virtue of the implicit casting from null to Bag{}.

max() : T[1]

The element with the maximum value of all elements in self. Elements must be of a type supporting
the max operation. The max operation – supported by the elements – must take one parameter of type T
and be both associative and commutative. UnlimitedNatural, Integer and Real fulfill this condition.

min() : T[1]

The element with the minimum value of all elements in self. Elements must be of a type supporting
the min operation. The min operation – supported by the elements – must take one parameter of type T
and be both associative and commutative. UnlimitedNatural, Integer and Real fulfill this condition.

notEmpty() : Boolean[1]

Is self not the empty collection?

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 80

null->notEmpty() returns false in virtue of the implicit casting from null to Bag{}.

product(T2)(c2 : Collection(T2)) : Set(Tuple(first:T[1],
second:T2[1]))

The cartesian product operation of self and c2.

selectByKind(TT)(type : TT[?]) : Collection(TT)

selectByType(TT)(type : TT[?]) : Collection(TT)

size() : Integer[1]

The number of elements in the collection self.

sum() : T[1]

The addition of all elements in self. Elements must be of an OclSummable type to provide the zero()
and sum() operations. The sum operation must be both associative: a.sum(b).sum© = a.sum(b.sum©),
and commutative: a.sum(b) = b.sum(a). Integer and Real fulfill this condition.

If the sum operation is not both associative and commutative, the sum expression is not well-formed,
which may result in unpredictable results during evaluation. If an implementation is able to detect a lack
of associativity or commutativity, the implementation may bypass the evaluation and return an invalid
result.

union(c : Collection(T)) : Bag(T)

The bag consisting of all elements in self and all elements in c.

Iterations

any(i : T[?] | body : Lambda T() : Boolean[1]) : T[?]

Returns any element in the source collection for which body evaluates to true. Returns invalid if
the body evaluates to invalid for any element, otherwise if there are one or more elements for which
the body is true, an indeterminate choice of one of them is returned, otherwise the result is invalid.

let source : Collection(T) = ..., body : Lambda T() : Boolean = ... in source->any(iterator | body) = source-
>select(iterator | body) >asSequence()>first()

collect(V)(i : T[?] | lambda : Lambda T() : V[?]) : Collection(V)

The Collection of elements that results from applying body to every member of the source set. The result
is flattened. Notice that this is based on collectNested, which can be of different type depending on the
type of source. collectNested is defined individually for each subclass of CollectionType.

collectNested(V)(i : T[?] | lambda : Lambda T() : V[?]) : Collection(V)

The Collection of elements which results from applying body to every member of the source collection.

exists(i : T[?] | lambda : Lambda T() : Boolean[?]) : Boolean[?]

Results in true if body evaluates to true for at least one element in the source collection.

exists(i : T[?], j : T[?] | lambda : Lambda T() : Boolean[?]) :
Boolean[?]

forAll(i : T[?] | lambda : Lambda T() : Boolean[?]) : Boolean[?]

Results in true if the body expression evaluates to true for each element in the source collection;
otherwise, result is false.

forAll(i : T[?], j : T[?] | lambda : Lambda T() : Boolean[?]) :
Boolean[?]

isUnique(i : T[?] | lambda : Lambda T() : OclAny[?]) : Boolean[1]

Results in true if body evaluates to a different value for each element in the source collection; otherwise,
result is false.

iterate(Tacc)(i : T[?]acc : ; Tacc[?] | lambda : Lambda T() : Tacc[?]) :
Tacc[?]

one(i : T[?] | lambda : Lambda T() : Boolean[1]) : Boolean[1]

Results in true if there is exactly one element in the source collection for which body is true.

reject(i : T[?] | lambda : Lambda T() : Boolean[1]) : Collection(T)

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 81

The sub-collection of the source collection for which body is false.

select(i : T[?] | lambda : Lambda T() : Boolean[1]) : Collection(T)

The sub-collection of the source collection for which body is true.

sortedBy(i : T[?] | lambda : Lambda T() : OclAny[?]) : Sequence(T)

Results in the Collection containing all elements of the source collection. The element for which body
has the lowest value comes first, and so on. The type of the body expression must have the < operation
defined. The < operation must return a Boolean value and must be transitive (i.e., if a < b and b < c
then a < c).

3.6. Enumeration
@Deprecated: Use OclEnumeration The Enumeration type is the type of an OrderedSet of
EnumerationLiteral.

conformsTo OclAny

Attributes

allLiterals : OrderedSet(EnumerationLiteral)

Evaluates to the literals of the enumeration.

Operations

allInstances() : Set(OclSelf)

Return a set of all enumeration values of self.

3.7. EnumerationLiteral
The standard type EnumerationLiteral represents a named constant value of an Enumeration.

conformsTo OclAny

Attributes

Enumeration : Bag(Enumeration[*|?])

OclEnumeration : Bag(OclEnumeration[*|?])

3.8. Integer
The standard type Integer represents the mathematical concept of integer. Integer is itself an instance of
the metatype PrimitiveType (from UML).

conformsTo Real

Operations

*(i : OclSelf[?]) : Integer[1] precedence: MULTIPLICATIVE

The value of the multiplication of self and i.

+(i : OclSelf[?]) : Integer[1] precedence: ADDITIVE

The value of the addition of self and i.

-() : Integer[1] precedence: UNARY

The negative value of self.

-(i : OclSelf[?]) : Integer[1] precedence: ADDITIVE

The value of the subtraction of i from self.

/(i : OclSelf[?]) : Real[1] invalidating precedence: MULTIPLICATIVE

The value of self divided by i. Evaluates to invalid if r is equal to zero.

abs() : Integer[1]

The absolute value of self.

div(i : Integer[?]) : Integer[1]

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 82

The number of times that i fits completely within self.

max(i : OclSelf[?]) : Integer[1]

The maximum of self an i.

min(i : OclSelf[?]) : Integer[1]

The minimum of self an i.

mod(i : Integer[?]) : Integer[1]

The result is self modulo i.

toString() : String[1]

Converts self to a string value.

toUnlimitedNatural() : UnlimitedNatural[1]

Converts a non-negative self to an UnlimitedNatural value. A negative self is converted to
invalid. An automatic coersion may be synthesized if the coercion enables an operation reference to
be resolved in an expression where no operation was available without coercion.

3.9. Map(K, V)
A Map provides a Set of key values, each of which has an associated value. Keys and values may be
null, but neither may be invalid.

conformsTo OclAny

Associations

keyType : K[?]

The key type of the key-value pairs of self.

valueType : V[?]

The value type of the key-value pairs of self.

Operations

=(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

Evaluates to true if self and s contain the same elements.

<>(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

at(key : OclAny[?]) : V[?] invalidating

The value of the map at key.

excludes(key : OclAny[?]) : Boolean[1]

True if key is not one of the keys of self, false otherwise.

excludes(key : OclAny[?], value : OclAny[?]) : Boolean[1]

True if key and value are not a key-value pair of self, false otherwise.

excludesAll(K2)(coll : Collection(K2)) : Boolean[1]

True if none of the elements of coll are keys of self, false otherwise.

excludesMap(K2, V2)(map : Map(K2, V2)[?]) : Boolean[1]

True if none of the key-value pairs of map are also key-value pairs of self, false otherwise.

excludesValue(value : OclAny[?]) : Boolean[1]

True if value is not one of the values of self, false otherwise.

excluding(key : OclAny[?]) : Map(K, V)[?]

The map containing all key-value pairs of self except any whose key is key.

excluding(key : OclAny[?], value : OclAny[?]) : Map(K, V)[?]

The map containing all key-value pairs of self except any whose key is key and whose value is key.

excludingAll(keys : Collection(OclAny)) : Map(K, V)[?]

The map containing all key-value pairs of self except any whose key is included in keys.

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 83

excludingMap(K2, V2)(map : Map(K2, V2)[?]) : Map(K, V)[?]

The map containing all key-value pairs of self except any which is also included in map.

includes(key : OclAny[?]) : Boolean[1]

True if key is one of the keys of self, false otherwise.

includes(key : OclAny[?], value : OclAny[?]) : Boolean[1]

True if key and value are a key-value pair of self, false otherwise.

includesAll(K2)(coll : Collection(K2)) : Boolean[1]

True if all the elements of coll are keys of self, false otherwise.

includesMap(K2, V2)(map : Map(K2, V2)[?]) : Boolean[1]

True if all of the key-value pairs of map are also key-value pairs of self, false otherwise.

includesValue(value : OclAny[?]) : Boolean[1]

True if value is one of the values of self, false otherwise.

including(key : K[?], value : V[?]) : Map(K, V)[?]

The map containing all of the key-value pairs of self and an additional key-value pair for key and
value. If key is already a key of self, the old value pair is replaced by value.

includingMap(K2, V2)(map : Map(K2, V2)[?]) : Map(K, V)[?]

The map containing all of the key-value pairs of self and map. The values associated with key-value
pairs in map replace those in self where the same key is used by both maps.

isEmpty() : Boolean[1]

True if self is the empty map, false otherwise.

keys() : Set(K)

A Set comprising all the keys of the key-value pairs in self.

notEmpty() : Boolean[1]

True if self not the empty map, false otherwise.

size() : Integer[1]

The number of key-value pairs in self.

values() : Bag(V)

The Bag comprising all the values of the key-value pairs in self.

3.10. OclAny
The number of elements in the collection self.essions. OclAny is itself an instance of the metatype
AnyType.

All classes in a UML model inherit all operations defined on OclAny. To avoid name conflicts between
properties in the model and the properties inherited from OclAny, all names on the properties of OclAny
start with ‘ocl.’ Although theoretically there may still be name conflicts, they can be avoided. One can
also use qualification by OclAny (name of the type) to explicitly refer to the OclAny properties.

Operations of OclAny, where the instance of OclAny is called object.

Attributes

OclInvalid : Bag(OclInvalid[*|?])

Operations

=(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

True if self is the same object as object2. Infix operator.

post: result = self = object2

<>(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

True if self is a different object from object2. Infix operator.

post: result = not (self = object2)

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 84

oclAsSet() : Set(OclSelf)

Returns a Set with self as the sole content, unless self is null in which case returns an empty set,

oclAsType(TT)(type : TT[?]) : TT[1] invalidating

Evaluates to self, where self is of the type identified by TT. The type TT may be any classifier defined
by OCL or a user metamodel; if the actual type of self at evaluation time does not conform to TT, then
the oclAsType operation evaluates to invalid.

If self is a multiply classified instance, the current classification used for OCL navigation is changed
to the classification to which TT conforms. The oclAsType call is not well-formed if the classification
is ambiguous.

In the case of feature redefinition, casting an object to a supertype of its actual type does not access the
supertype’s definition of the feature; according to the semantics of redefinition, the redefined feature
simply does not exist for the object. However, when casting to a supertype, any features additionally
defined by the subtype are suppressed.

post IsSelf: result = self

oclIsInState(statespec : OclState[?]) : Boolean[1]

Evaluates to true if the self is in the state identified by statespec.

oclIsInvalid() : Boolean[1] validating

Evaluates to true if the self is equal to OclInvalid.

oclIsKindOf(type : OclType[?]) : Boolean[1]

Evaluates to true if the type of self conforms to type. That is, self is of type type or a subtype
of type.

oclIsNew() : Boolean[1]

Can only be used in a postcondition. Evaluates to true if the self is created during performing the
operation (for instance, it didn’t exist at precondition time).

oclIsTypeOf(type : OclType[?]) : Boolean[1]

Evaluates to true if self is of the type type but not a subtype of type.

oclIsUndefined() : Boolean[1] validating

Evaluates to true if the self is equal to invalid or equal to null.

oclLog() : OclSelf[?]

Evaluates to the self, with the side effect of generating a log message comprising self.

oclLog(message : String[?]) : OclSelf[?]

Evaluates to the self, with the side effect of generating a log message comprising message followed by
self.

oclType() : OclSelf[1]

Evaluates to the most derived type of which self is currently an instance. If self is an instance
of a multiply classified type, the return is the most derived type of the current classification which is
established when the instance is passed to OCL, or re-established by an oclAsType() call.

oclTypes() : Set(OclSelf[*|?])

Evaluates to all of the most derived type of which self is an instance. The return from oclTypes()
is normally equivalent to that from oclType() unless self is an instance of multiply classified type.

toString() : String[1]

Returns a string representation of self.

3.11. OclComparable
The type OclComparable defines the compareTo operation used by the sortedBy iteration. Only types
that provide a derived compareTo implementation may be sorted.

conformsTo OclAny

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 85

Operations

<(that : OclSelf[?]) : Boolean[1] precedence: RELATIONAL

True if self is less than that.

<=(that : OclSelf[?]) : Boolean[1] precedence: RELATIONAL

True if self is less than or equal to that.

>=(that : OclSelf[?]) : Boolean[1] precedence: RELATIONAL

True if self is greater than or equal to that.

>(that : OclSelf[?]) : Boolean[1] precedence: RELATIONAL

True if self is greater than that.

compareTo(that : OclSelf[?]) : Integer[1]

Return -ve, 0, +ve according to whether self is less than, equal to , or greater than that.

The compareTo operation should be commutative.

3.12. OclElement
The type OclElement is the implicit supertype of any user-defined type that has no explicit supertypes.
Operations defined for OclElement are therefore applicable to all user-defined types.

conformsTo OclAny

Attributes

OclElement : Bag(OclElement[*|?])

OclElement : Bag(OclElement[*|?])

oclContents : Set(OclElement)

The composed contents of self.

Associations

oclContainer : OclElement[?]

The object for which self is a composed content or null if there is no such object.

Operations

allInstances() : Set(OclSelf)

Return a set of all instances of the type and derived types of self.

oclAsModelType(TT)(type : TT[?]) : TT[1] invalidating

Evaluates to self, where self is of the model type identified by TT.

Most model elements have metamodel types for use with oclAsType, but no model type and so the return
is invalid.

Model elements such as UML’s InstnaceSpecification that do support distinct model and metamodel types
return self with the cast type TT that may be used for further navigation. If the actual model type of
self at evaluation time does not conform to TT, then the oclAsType operation evaluates to invalid.

If self is a multiply classified instance, the current classification used for OCL navigation is changed to
the classification to which TT conforms. The oclAsModelType call is not well-formed if the classification
is ambiguous.

post IsSelf: result = self

oclContainer() : OclElement[?]

Returns the object for which self is a composed content or null if there is no such object.

oclContents() : Set(OclElement)

Returns the composed contents of self.

oclIsModelKindOf(type : OclType[?]) : Boolean[1]

Evaluates to true if the type of self conforms to the model type type. That is, self is of type type
or a subtype of type.

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 86

The return is normally false since few model elements have model types. UML’s
InstanceSpecification::classifier provides a multiple classification for a model type.

oclModelType() : OclSelf[1]

Evaluates to the most derived model type of which self is currently an instance. If self is an instance
of a multiply classified model type, the return is the most derived type of the current classification which
is established by an oclAsModelType() call.

The return is normally invalid since few model elements have model types. UML’s
InstanceSpecification::classifier provides a multiple classification for a model type.

oclModelTypes() : Set(OclSelf[*|?])

Evaluates to all of the most derived model types of which self is an instance. The return from
oclModelTypes() is normally equivalent to that from oclModelType() unless self is an
instance of multiply classified model type.

The return is normally invalid since few model elements have model types. UML’s
InstanceSpecification::classifier provides a multiple classification for a model type.

3.13. OclEnumeration
The OclEnumeration type is the implicit supertype of any user Enumeration type.

conformsTo OclType

Attributes

allLiterals : OrderedSet(EnumerationLiteral)

Evaluates to the literals of the enumeration.

Operations

allInstances() : Set(OclSelf)

Return a set of all enumeration values of self.

3.14. OclInvalid
The type OclInvalid is a type that conforms to all other types. It has one single instance, identified
as invalid. Any property call applied on invalid results in invalid, except for the operations
oclIsUndefined() and oclIsInvalid(). OclInvalid is itself an instance of the metatype InvalidType.

conformsTo OclVoid

Associations

oclBadProperty : OclAny[?]

An oclBadProperty may be used as a placeholder in an unsuccessfully created OCLExpression.

Operations

=(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

Returns invalid.

<>(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

Returns invalid.

allInstances() : Set(OclSelf)

Returns invalid.

and(b : Boolean[?]) : Boolean[?] validating precedence: AND

implies(b : Boolean[?]) : Boolean[?] validating precedence: IMPLIES

oclAsSet() : Set(OclSelf)

oclAsType(TT)(type : TT[?]) : TT[?]

oclBadOperation() : OclAny[?]

An oclBadOperation may be used as a placeholder in an unsuccessfully created OCLExpression.

oclIsInvalid() : Boolean[1] validating

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 87

oclIsKindOf(type : OclType[?]) : Boolean[1]

oclIsTypeOf(type : OclType[?]) : Boolean[1]

oclIsUndefined() : Boolean[1] validating

oclType() : OclSelf[1]

or(b : Boolean[?]) : Boolean[?] validating precedence: OR

toString() : String[1]

Returns ‘invalid’.

3.15. OclLambda
The type OclLambda is the implicit supertype of all Lambda types. The operations defined for OclLambda
therefore apply to all lambda expressions.

conformsTo OclAny

3.16. OclMessage
OclMessage This sub clause contains the definition of the standard type OclMessage. As defined in
this sub clause, each ocl message type is actually a template type with one parameter. ‘T’ denotes the
parameter. A concrete ocl message type is created by substituting an operation or signal for the T.

The predefined type OclMessage is an instance of MessageType. Every OclMessage is fully determined
by either the operation, or signal given as parameter. Note that there is conceptually an undefined (infinite)
number of these types, as each is determined by a different operation or signal. These types are unnamed.
Every type has as attributes the name of the operation or signal, and either all formal parameters of the
operation, or all attributes of the signal. OclMessage is itself an instance of the metatype MessageType.

OclMessage has a number of predefined operations, as shown in the OCL Standard Library.

conformsTo OclAny

Operations

hasReturned() : Boolean[1]

True if type of template parameter is an operation call, and the called operation has returned a value. This
implies the fact that the message has been sent. False in all other cases.

isOperationCall() : Boolean[1]

Returns true if the OclMessage represents the sending of a UML Operation call.

isSignalSent() : Boolean[1]

Returns true if the OclMessage represents the sending of a UML Signal.

result() : OclAny[?]

Returns the result of the called operation, if type of template parameter is an operation call, and the called
operation has returned a value. Otherwise the invalid value is returned.

3.17. OclSelf
The pseudo-type OclSelf denotes the statically determinate type of self in Operation and Iteration
signatures. Instances of OclSelf are never created.

conformsTo OclAny

3.18. OclState
conformsTo OclAny

3.19. OclStereotype
The type OclStereotype is the implicit supertype of any UML stereotype. Operations defined for
OclStereotype are therefore applicable to all UML stereotypes.

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 88

conformsTo OclType

Operations

allInstances() : Set(OclSelf)

Return a set of all instances of the stereotype and derived types of self.

3.20. OclSummable
The type OclSummable defines the sum and zero operations used by the Collection::sum iteration. Only
types that provide derived sum and zero implementations may be summed.

conformsTo OclAny

Operations

sum(that : OclSelf[?]) : OclSelf[?]

Return the sum of self and that.

The sum operation should be associative.

zero() : OclSelf[?]

Return the ‘zero’ value of self to initialize a summation.

zero().sum(self) = self.

3.21. OclTuple
The type OclTuple is the implicit supertype of all Tuple types. The operations defined for OclTuple
therefore apply to all tuples.

conformsTo OclAny

Operations

=(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

<>(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

3.22. OclType
The type OclType is the implicit supertype of any UML type. Operations defined for OclType are
therefore applicable to all UML types.

conformsTo OclElement

Operations

conformsTo(type2 : OclType[?]) : Boolean[1]

Returns true if type2 conforms to self.

3.23. OclVoid
The type OclVoid is a type that conforms to all other types except OclInvalid. It has one single instance,
identified as null, that corresponds with the UML LiteralNull value specification. Any property call
applied on null results in invalid, except for the oclIsUndefined(), oclIsInvalid(), =(OclAny) and
<>(OclAny) operations. However, by virtue of the implicit conversion to a collection literal, an expression
evaluating to null can be used as source of collection operations (such as ‘isEmpty’). If the source is
the null literal, it is implicitly converted to Bag{}.

OclVoid is itself an instance of the metatype VoidType.

conformsTo OclAny

Operations

=(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

Redefines the OclAny operation, returning true if object is null, invalid if object is invalid,
false otherwise.

<>(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 89

allInstances() : Set(OclSelf[*|?])

Returns Set{null}.

and(b : Boolean[?]) : Boolean[?] precedence: AND

implies(b : Boolean[?]) : Boolean[?] precedence: IMPLIES

oclAsSet() : Set(OclSelf)

oclIsInvalid() : Boolean[1] validating

oclIsUndefined() : Boolean[1] validating

or(b : Boolean[?]) : Boolean[?] precedence: OR

toString() : String[1]

Returns null.

3.24. OrderedCollection(T)
The OrderedCollection type provides the shared functionality of the OrderedSet and Sequence collections
for which the elements are ordered. The common supertype of OrderedCollection is Collection.

conformsTo Collection(T)

Operations

at(index : Integer[?]) : T[?] invalidating

The i-th element of ordered collection.

first() : T[?] invalidating

The first element in self.

indexOf(obj : OclAny[?]) : Integer[1] invalidating

The index of object obj in the ordered collection.

last() : T[?] invalidating

The last element in self.

3.25. OrderedSet(T)
The OrderedSet is a Set, the elements of which are ordered. It contains no duplicates. OrderedSet is itself
an instance of the metatype OrderedSetType. An OrderedSet is not a subtype of Set, neither a subtype of
Sequence. The common supertype of Sets and OrderedSets is Collection.

conformsTo OrderedCollection(T) , UniqueCollection(T)

Operations

=(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

<>(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

-(s : UniqueCollection(OclAny)) : OrderedSet(T) precedence: ADDITIVE

The elements of self, which are not in s.

append(object : T[?]) : OrderedSet(T)

The set of elements, consisting of all elements of self, followed by object.

appendAll(objects : OrderedCollection(T)) : OrderedSet(T)

The set of elements, consisting of all elements of self, followed by objects.

excluding(object : OclAny[?]) : OrderedSet(T)

The ordered set containing all elements of self apart from object.

The order of the remaining elements is not changed.

excludingAll(objects : Collection(OclAny)) : OrderedSet(T)

The ordered set containing all elements of self apart from all occurrences of all objects.

flatten(T2)() : OrderedSet(T2)

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 90

including(object : T[?]) : OrderedSet(T)

The ordered set containing all elements of self plus object added as the last element if not already
present.

includingAll(objects : Collection(T)) : OrderedSet(T)

The ordered set containing all elements of self plus objects added as the last elements.

insertAt(index : Integer[?], object : T[?]) : OrderedSet(T)
invalidating

The ordered set consisting of self with object present at position index.

prepend(object : T[?]) : OrderedSet(T)

The sequence consisting of object, followed by all elements in self.

post IsAtStart: result->at(1) = object

post IsShiftedAlong: Sequence{1..self->size()}->forAll(index | self->at(index) = result->at(index + 1))

post IsSizePlusOne: result->size() = self->size() + 1

prependAll(objects : OrderedCollection(T)) : OrderedSet(T)

The sequence consisting of objects, followed by all elements in self.

reverse() : OrderedSet(T)

The ordered set of elements with same elements but with the opposite order.

selectByKind(TT)(type : TT[?]) : OrderedSet(TT)

selectByType(TT)(type : TT[?]) : OrderedSet(TT)

subOrderedSet(lower : Integer[?], upper : Integer[?]) : OrderedSet(T)
invalidating

The sub-set of self starting at number lower, up to and including element number upper.

Iterations

closure(i : T[1] | lambda : Lambda T() : OrderedSet(T)[?]) :
OrderedSet(T)

The closure of applying body transitively to every distinct element of the source collection.

collect(V)(i : T[?] | lambda : Lambda T() : V[?]) : Sequence(V)

collectNested(V)(i : T[?] | lambda : Lambda T() : V[?]) : Sequence(V)

The sequence of elements that results from applying body to every member of the source ordered
collection.

reject(i : T[?] | lambda : Lambda T() : Boolean[1]) : OrderedSet(T)

The ordered set of the source ordered set for which body is false.

select(i : T[?] | lambda : Lambda T() : Boolean[1]) : OrderedSet(T)

The ordered set of the source ordered set for which body is true

sortedBy(i : T[?] | lambda : Lambda T() : OclAny[?]) : OrderedSet(T)

Results in the ordered set containing all elements of the source collection. The element for which body
has the lowest value comes first, and so on. The type of the body expression must have the < operation
defined. The < operation must return a Boolean value and must be transitive (i.e., if a < b and b < c,
then a < c).

3.26. Real
The standard type Real represents the mathematical concept of real. Note that Integer is a subclass of
Real, so for each parameter of type Real, you can use an integer as the actual parameter. Real is itself an
instance of the metatype PrimitiveType (from UML).

conformsTo OclComparable , OclSummable

Operations

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 91

=(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

Returns true if the numeric value of self is the same as the numeric value of object2, false
otherwise.

<>(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

Returns true if the numeric value of self is the not the same as the numeric value of object2, false
otherwise.

*(r : OclSelf[?]) : Real[1] precedence: MULTIPLICATIVE

The value of the multiplication of self and r.

+(r : OclSelf[?]) : Real[1] precedence: ADDITIVE

The value of the addition of self and r.

-() : Real[1] precedence: UNARY

The negative value of self.

-(r : OclSelf[?]) : Real[1] precedence: ADDITIVE

The value of the subtraction of r from self.

/(r : OclSelf[?]) : Real[1] invalidating precedence: MULTIPLICATIVE

The value of self divided by r. Evaluates to invalid if r is equal to zero.

abs() : Real[1]

The absolute value of self.

floor() : Integer[1]

The largest integer that is less than or equal to self.

max(r : OclSelf[?]) : Real[1]

The maximum of self and r.

min(r : OclSelf[?]) : Real[1]

The minimum of self and r.

round() : Integer[1]

The integer that is closest to self. When there are two such integers, the largest one.

toString() : String[1]

Converts self to a string value.

3.27. Sequence(T)
A sequence is a collection where the elements are ordered. An element may be part of a sequence more
than once. Sequence is itself an instance of the metatype SequenceType. A Sentence is not a subtype of
Bag. The common supertype of Sentence and Bags is Collection.

conformsTo OrderedCollection(T)

Operations

=(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

True if self contains the same elements as s in the same order.

<>(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

append(object : T[?]) : Sequence(T)

The sequence of elements, consisting of all elements of self, followed by object.

appendAll(objects : OrderedCollection(T)) : Sequence(T)

The sequence of elements, consisting of all elements of self, followed by objects.

excluding(object : OclAny[?]) : Sequence(T)

The sequence containing all elements of self apart from all occurrences of object.

The order of the remaining elements is not changed.

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 92

excludingAll(objects : Collection(OclAny)) : Sequence(T)

The sequence containing all elements of self apart from all occurrences of all objects.

flatten(T2)() : Sequence(T2)

Redefines the Collection operation. If the element type is not a collection type, this results in the same
sequence as self. If the element type is a collection type, the result is the sequence containing all the
elements of all the recursively flattened elements of self. The order of the elements is partial.

including(object : T[?]) : Sequence(T)

The sequence containing all elements of self plus object added as the last element.

includingAll(objects : Collection(T)) : Sequence(T)

The sequence containing all elements of self plus objects added as the last elements.

insertAt(index : Integer[?], object : T[?]) : Sequence(T) invalidating

The sequence consisting of self with object inserted at position index.

prepend(object : T[?]) : Sequence(T)

The sequence consisting of object, followed by all elements in self.

prependAll(objects : OrderedCollection(T)) : Sequence(T)

The sequence consisting of objects, followed by all elements in self.

reverse() : Sequence(T)

The sequence containing the same elements but with the opposite order.

selectByKind(TT)(type : TT[?]) : Sequence(TT)

selectByType(TT)(type : TT[?]) : Sequence(TT)

subSequence(lower : Integer[?], upper : Integer[?]) : Sequence(T)
invalidating

The sub-sequence of self starting at number lower, up to and including element number upper.

Iterations

closure(i : T[1] | lambda : Lambda T() : OrderedSet(T)[?]) :
OrderedSet(T)

The closure of applying body transitively to every distinct element of the source collection.

collect(V)(i : T[?] | lambda : Lambda T() : V[?]) : Sequence(V)

collectNested(V)(i : T[?] | lambda : Lambda T() : V[?]) : Sequence(V)

The sequence of elements that results from applying body to every member of the source ordered
collection.

reject(i : T[?] | lambda : Lambda T() : Boolean[1]) : Sequence(T)

The subsequence of the source sequence for which body is false.

select(i : T[?] | lambda : Lambda T() : Boolean[1]) : Sequence(T)

The subsequence of the source sequence for which body is true.

sortedBy(i : T[?] | lambda : Lambda T() : OclAny[?]) : Sequence(T)

Results in the Sequence containing all elements of the source collection. The element for which body has
the lowest value comes first, and so on. The type of the body expression must have the < operation defined.
The < operation must return a Boolean value and must be transitive (i.e., if a < b and b < c then a < c).

3.28. Set(T)
conformsTo UniqueCollection(T)

Operations

=(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

Evaluates to true if self and s contain the same elements.

<>(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 93

-(s : UniqueCollection(OclAny)) : Set(T) precedence: ADDITIVE

The elements of self, which are not in s.

excluding(object : OclAny[?]) : Set(T)

The set containing all elements of self without object.

excludingAll(objects : Collection(OclAny)) : Set(T)

The set containing all elements of self apart from all occurrences of all objects.

flatten(T2)() : Set(T2)

Redefines the Collection operation. If the element type is not a collection type, this results in the same
set as self. If the element type is a collection type, the result is the set containing all the elements of
all the recursively flattened elements of self.

including(object : T[?]) : Set(T)

The set containing all elements of self plus object.

includingAll(objects : Collection(T)) : Set(T)

The set containing all elements of self and objects.

selectByKind(TT)(type : TT[?]) : Set(TT)

selectByType(TT)(type : TT[?]) : Set(TT)

Iterations

closure(i : T[1] | lambda : Lambda T() : Set(T)[?]) : Set(T)

The closure of applying body transitively to every distinct element of the source collection.

collect(V)(i : T[?] | lambda : Lambda T() : V[?]) : Bag(V)

collectNested(V)(i : T[?] | lambda : Lambda T() : V[?]) : Bag(V)

The Bag of elements which results from applying body to every member of the source nonordered
collection.

reject(i : T[?] | lambda : Lambda T() : Boolean[1]) : Set(T)

The subset of the source set for which body is false.

select(i : T[?] | lambda : Lambda T() : Boolean[1]) : Set(T)

The subset of set for which expr is true.

sortedBy(i : T[?] | lambda : Lambda T() : OclAny[?]) : OrderedSet(T)

Results in the ordered set containing all elements of the source collection. The element for which body
has the lowest value comes first, and so on. The type of the body expression must have the < operation
defined. The < operation must return a Boolean value and must be transitive (i.e., if a < b and b < c,
then a < c).

3.29. State
conformsTo OclState

3.30. String
The standard type String represents strings, which can be both ASCII or Unicode. String is itself an
instance of the metatype PrimitiveType (from UML).

conformsTo OclComparable , OclSummable

Operations

=(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

<>(object2 : OclSelf[?]) : Boolean[1] precedence: EQUALITY

<(s : OclSelf[?]) : Boolean[1] precedence: RELATIONAL

True if self is less than s, using the locale defined by looking up oclLocale in the current environment.

<=(s : OclSelf[?]) : Boolean[1] precedence: RELATIONAL

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 94

True if self is less than or equal to s, using the locale defined by looking up oclLocale in the current
environment.

>=(s : OclSelf[?]) : Boolean[1] precedence: RELATIONAL

True if self is greater than or equal to s, using the locale defined by looking up oclLocale in the current
environment.

>(s : OclSelf[?]) : Boolean[1] precedence: RELATIONAL

True if self is greater than s, using the locale defined by looking up oclLocale in the current
environment.

+(s : String[?]) : String[1] precedence: ADDITIVE

The concatenation of self and s.

at(i : Integer[?]) : String[1] invalidating

Queries the character at position i in self.

characters() : Sequence(String)

Obtains the characters of self as a sequence.

compareTo(that : OclSelf[?]) : Integer[1]

The comparison of self with that. -ve if less than, 0 if equal, +ve if greater than.

concat(s : String[?]) : String[1]

The concatenation of self and s.

endsWith(s : String[?]) : Boolean[1]

Returns true if self ends with the string s. Every string ends with the empty string.

equalsIgnoreCase(s : String[?]) : Boolean[1]

Queries whether s and self are equivalent under case-insensitive collation.

indexOf(s : String[?]) : Integer[1]

Queries the first index in self at which s is a substring of self, or zero if s is not a substring of self.
The empty string is a substring of every string at index 1 (and also at all other indexes).

lastIndexOf(s : String[?]) : Integer[1]

Queries the last in self at which s is a substring of self, or zero if s is not a substring of self. The
empty string is a substring of every string at index self-size()+1 (and also at all other indexes).

matches(regex : String[?]) : Boolean[1]

Use a regular expression match and return true if self matches regex, false otherwise.

replaceAll(regex : String[?], replacement : String[?]) : String[1]
invalidating

Return a string derived from self by replacing all matches of regex by replacement.

replaceFirst(regex : String[?], replacement : String[?]) : String[1]
invalidating

Return a string derived from self by replacing the first match of regex by replacement.

size() : Integer[1]

The number of characters in self.

startsWith(s : String[?]) : Boolean[1]

Returns true if self starts with the string s. Every string starts with the empty string.

substituteAll(oldSubstring : String[?], newSubstring : String[?]) :
String[1]

Return a string derived from self by replacing all occurrences of oldSubstring by newSubstring.

substituteFirst(oldSubstring : String[?], newSubstring : String[?]) :
String[1]

Return a string derived from self by replacing the first occurrence of oldSubstring by newSubstring.
Returns invalid if there is no first occurrence.

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 95

substring(lower : Integer[?], upper : Integer[?]) : String[1]
invalidating

The sub-string of self starting at character number lower, up to and including character number upper.
Character numbers run from 1 to self.size().

toBoolean() : Boolean[1] invalidating

Converts self to a boolean value.

toInteger() : Integer[1] invalidating

Converts self to an Integer value.

toLower() : String[1]

This is a deprecated variant of toLowerCase() preserving compatibility with traditional Eclipse OCL
behaviour.

toLowerCase() : String[1]

Converts self to lower case, using the locale defined by looking up oclLocale in the current
environment. Otherwise, returns the same string as self.

toReal() : Real[1] invalidating

Converts self to a Real value.

toString() : String[1]

Returns self.

toUpper() : String[1]

This is a deprecated variant of toUpperCase() preserving compatibility with traditional Eclipse OCL
behaviour.

toUpperCase() : String[1]

Converts self to upper case, using the locale defined by looking up oclLocale in the current
environment. Otherwise, returns the same string as self.

tokenize() : Sequence(String)

Partition self into a sequence substrings separated by any of space, line-feed, carriage-return, form-
feed and horizontal-tab delimiters. The delimiters are omitted from the return.

tokenize(delimiters : String[?]) : Sequence(String)

Partition self into a sequence substrings separated by characters in the delimiters. The delimiters are
omitted from the return.

tokenize(delimiters : String[?], returnDelimiters : Boolean[?]) :
Sequence(String)

Partition self into a sequence substrings separated by characters in the delimiters. If returnDelimeters
is true the returned sequence includes the delimiters, otherwise the delimiters are omitted.

trim() : String[1]

Return self with leading and trailing whitespace removed.

3.31. Type
The UML Type is the supertype of anything that may be used as a type.

conformsTo OclType

Operations

conformsTo(type2 : Type[?]) : Boolean[1]

Returns true if type2 conforms to self.

3.32. UniqueCollection(T)
The UniqueCollection type provides the shared functionality of the OrderedSet and Set collections for
which the elements are unique. The common supertype of UniqueCollection is Collection.

The OCL Standard Library

Eclipse OCL 2020-06 (6.12.0) 96

conformsTo Collection(T)

Operations

-(s : UniqueCollection(OclAny)) : UniqueCollection(T) precedence: ADDITIVE

The elements of self, which are not in s.

intersection(c : Collection(T)) : Set(T)

The intersection of self and c (i.e., the set of all elements that are in both self and c).

symmetricDifference(s : UniqueCollection(OclAny)) : Set(T)

The set containing all the elements that are in self or s, but not in both.

union(s : UniqueCollection(T)) : Set(T)

The set consisting of all elements in self and all elements in s.

Iterations

sortedBy(i : T[?] | lambda : Lambda T() : OclAny[?]) : OrderedSet(T)

Results in the ordered set containing all elements of the source collection. The element for which body
has the lowest value comes first, and so on. The type of the body expression must have the < operation
defined. The < operation must return a Boolean value and must be transitive (i.e., if a < b and b < c,
then a < c).

3.33. UnlimitedNatural
The standard type UnlimitedNatural is used to encode the non-negative values of a multiplicity
specification. This includes a special unlimited value (*) that encodes the upper value of a multiplicity
specification. UnlimitedNatural is itself an instance of the metatype UnlimitedNaturalType.

Note that UnlimitedNatural is not a subclass of Integer.

conformsTo OclComparable

Operations

max(i : OclSelf[?]) : UnlimitedNatural[1]

The maximum of self an i.

min(i : OclSelf[?]) : UnlimitedNatural[1]

The minimum of self an i.

oclAsType(TT)(type : TT[?]) : TT[?] invalidating

Evaluates to self, where self is of the type identified by T. The type T may be any classifier defined in
the UML model; if the actual type of self at evaluation time does not conform to T, then the oclAsType
operation evaluates to invalid.

The standard behavior is redefined for UnlimitedNatural. Numeric values may be converted to Real or
Integer, but the unlimited value may not. Conversion of unlimited to Real or Integer returns invalid.

toInteger() : Integer[1] invalidating

Converts self to an Integer value unless self is unlimited in which case self is converted to
invalid.

Eclipse OCL 2020-06 (6.12.0) 97

Chapter 4. Tutorials
The OCLinEcore tutorial shows how

• to install OCL and the additional Editors and Examples

• to use the OCLinEcore editor

• to edit Ecore meta-models

• to enrich Ecore meta-models with OCL invariants, bodies and values

• to use embedded OCL for validation of models

• to use the OCL Console to practice evaluation of OCL

• to generate Java code for Ecore that uses the embedded OCL

The Working with Classic OCL tutorial shows how

• the OCL Parser may be invoked from Java

• the OCL evaluator may be invoked from Java

4.1. OCLinEcore tutorial
This tutorial has been updated for Eclipse Mars; Eclipse 4.5, EMF 2.11, OCL 6.0.

• Some screenshots may be slightly out of date.

4.1.1. Overview
In this example you will

• Create an Ecore model using the OCLinEcore text editor

• Create a dynamic instance of that Ecore model

• Enrich the Ecore model with OCL using the OCLinEcore text editor

• Validate the model and observe the OCL enrichments

• Use the Interactive OCL Console to execute the OCL enrichments

The above is all performed without generating any Java code; the models exploit EMF’s dynamic
capabilities and the OCL integration.

You may then

• Create an Ecore genmodel

• Generate Java code for the Ecore model that invokes the OCL expressions.

See the OCL Debugger tutorial for debugging See the Code Generator tutorial for Java code generation

4.1.2. References
This tutorial assumes that the reader is familiar with generating models using EMF. The reader is referred
to Generating an EMF Model.

Other references:

• The Object Constraint Language: Getting Your Models Ready for MDA. Jos Warmer and Anneke
Kleppe. (Addison-Wesley Object Technology)

• OCL specification.

• OCLinEcore wiki page.

4.1.3. Installing the Eclipse OCL Examples
Please see the Instructions for installing the OCL Editors.

4.1.4. Troubleshooting
The editor currently provides syntax and semantic validation. It does not yet apply all the well-formedness
validation rules, so some problems may be unreported. This is work in progress. Sometimes spurious
errors are displayed, which may go away with a Save, but may require an editor close and reopen.

/help/topic/org.eclipse.emf.doc/tutorials/clibmod/clibmod.html
http://www.omg.org/spec/OCL
http://wiki.eclipse.org/OCL/OCLinEcore

Tutorials

Eclipse OCL 2020-06 (6.12.0) 98

4.1.5. Using the OCLinEcore text editor for Ecore
There are many different (compatible) ways to create and edit Ecore models.

• An Ecore Model may be created from an XSD schema file

• An Ecore Model may be created from a Rose model file

• An Ecore Model may be created from annotated Java file

• The Sample Ecore Editor provides tree editing

• The Ecore Tools project provides graphical editing

• Papyrus provides UML editing that may be converted to Ecore

Here we introduce the OCLinEcore editor that provides text editing, which is appropriate when a non-
trivial amount of OCL enrichment is required.

All the above approaches update a *.ecore file, so the user is free to choose whichever editing approach
is best suited for the planned changes.

4.1.5.1. Create a New EMF Project
We will first create a new project for this example; so invoke File->New->Project... (left-click the File
menu, then left-click New, then left-click Project...).

In the New Project dialog left-click to expand Eclipse Modeling Framework, then left-click to select
Empty EMF Project.

Left-click on Next and in the New Empty EMF Project dialog type Tutorial as the project name.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 99

Left-click on Finish.

4.1.5.2. Create a New Ecore Model
We will now create a new model for this example.

First right-click on the model folder in the Tutorial project to define the target folder and pop-up the
context-sensitive menu. Select New->Other... then select the OCLinEcore Ecore File from the OCL
category.

The alternative OCLinEcore Text File creates a *.oclinecore text file which preserves
whitespace and comments more faithfully but which must be converted to a *.ecore
file for many modeling purposes.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 100

Left-click Next and enter Tutorial.ecore as the file name.

Left-click Finish to open up an editor with some minimal example content demonstrating

• the nesting of attributes or operations or invariants within classes within packages

• use of OCL to define the body of an operation

• the syntax for mutually opposite properties

• use of OCL to define an invariant and a custom error message

Close the editor by left-clicking the cross on the editor tab.

You can see the normal Ecore view of the file by right-clicking on the Tutorial.ecore file to pop-up the
context-sensitive menu and select Open With->Sample Ecore Model Editor.

Close the editor by left-clicking the cross on the editor tab.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 101

4.1.5.3. Edit Ecore Model as OCLinEcore
We will now open the Ecore model using the OCLinEcore text editor and provide some initial content.

Right-click on the Tutorial.ecore file to pop-up the context-sensitive menu and select Open With-
>OCLinEcore Editor.

Now follow the following procedure to cut and paste the following text into the editor.

• select all existing content (e.g. Ctrl-A)

• delete all (e.g. Ctrl-X)

• open [Text for cut and paste]

• select and copy the text (e.g Ctrl-A and Ctrl-C) from the browser

• paste (e.g Ctrl-V) in the original editor

• save the contents (e.g. Ctrl-S)

The syntax is defined in OCLinEcore. It emulates OMG specifications with ‘name : type[multiplicity]
{ properties }’.

• import associates an alias with an external EPackage.

• package introduces an EPackage with name, nsPrefix and nsURI.

• class introduces an EClass with name and optional superclasses.

• attribute introduces a property with a datatype type (an EAttribute).

• property introduces a property with a class type (an EReference).

• # introduces an opposite role name.

• _'xxx' escapes an awkward or reserved word identifier.

The import URI is the URI of a Package, so in the example the http://www.eclipse.org/
emf/2002/Ecore is the URI of the model, # is the fragment separator and / is the path to the Package
at the root of the XMI document.

../references/4100-metamodel.oclinecore

Tutorials

Eclipse OCL 2020-06 (6.12.0) 102

Completion assist (Ctrl Space) may be used for syntax assistance.

Format (Ctrl-Shift F) may be used to auto-format a selected range.

In order to discover a syntax for which completion assist is insufficient, you may use the Sample Ecore
Editor on a test file to create the kind of Ecore element that you require, and then open the test file with
the OCLinEcore editor to see the corresponding textual syntax.

4.1.5.4. The Tutorial Meta-Model
The example meta-model models a library with members and books and loans of books to members. It
may be viewed graphically using the Ecore Tools (not part of this tutorial).

Note that this diagram is an Ecore Diagram rather than a UML Diagram and so the default multiplicities
for attributes is Ecore’s [0..1] rather than OCLinEcore’s and UML’s [1..1].

Note also that the OCL types String and Integer map to EString and EBigInteger in Ecore.

4.1.6. Create a Dynamic Model Instance
At this point a corresponding EMF tutorial would show how to generate Java code for the meta-model
and an editor for the meta-model. Here we are concerned with modeling, so we will continue with the
models alone.

In the editor view, double-click on Library to select it and then right-click to show the context-sensitive
menu and then left-click on Create Dynamic Instance... to start to create a new Dynamic Model with
Library at its root.

Creating a Dynamic Instance requires a valid *.ecore file to exist. It does not work
when editing *.oclinecore files.

In the Create Dynamic Instance dialog select Tutorial/model as the parent folder and enter
Tutorial.xmi as the file name for the dynamic model instance and left-click Finish.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 103

The model is automatically opened for editing. If it is does not open with the Sample Reflective Ecore
Model Editor, close the editor and open explicitly using *Open With->Sample Reflective Ecore Model
Editor). This gives a tree-like presentation of the model. The properties of each node can be seen in the
Properties View.

(If the Properties View is not visible, right-click within the editor and left-click on Show Properties
View.)

Select the Library and use give it a name such as lib.

From the right-button menu for Library use New Child->Books Book twice, use New Child->Loans
Loan once and New Child->Members Member three times to populate the model with two books, one
loan and three members.

Left-click to select each of the Books and Members in turn and enter a name such as b1 or m2 using the
Properties View. Specify that b1 has one copy and that b2 has 2 copies.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 104

The books and members now have distinct titles in the outline. When you left-click to select the Loan
and edit its Book and Member attributes, the associated pull-down has meaningful entries. Specify that
the Loan is for b2 by m3.

The configuration so far is simple, three members, two books and one loan. We can validate that this by
right-clicking on the Library node, and left-clicking to Validate Library and all its children.

Since the model is so simple, it is difficult to have anything wrong; most of the illegal modeling options
such as a Loan composing rather than referencing a Book are prevented by the Editor’s enforcement of
the meta-model.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 105

(If you have an error at this point, a Details button will lead you to some diagnostics that may clarify the
problem. Pasting the following XMI into Tutorial.xmi should also resolve an entry problem.)

<?xml version="1.0" encoding="ASCII"?>
<tut:Library xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tut="http://www.eclipse.org/mdt/ocl/oclinecore/tutorial"
 xsi:schemaLocation="http://www.eclipse.org/mdt/ocl/oclinecore/tutorial Tutorial.ecore"
 name="lib">
 <books name="b1" copies="1"/>
 <books name="b2" copies="2"/>
 <loans book="//@books.1" member="//@members.2"/>
 <members name="m1"/>
 <members name="m2"/>
 <members name="m3"/>
</tut:Library>

We will now create two further identical loans of b2 by m3. This may conveniently be performed by left-
clicking to select the existing loan, typing Ctrl-C to copy it, left-clicking to select the Library as the
new parent, then typing Ctrl-V to paste it on the library. Repeat so that there are three identical loans.

Validating the library should still be successful, although it is clearly wrong for the two copies of b2 to
participate in three loans.

4.1.7. Enrich the meta-model with OCL
The semantic constraint that a book cannot be borrowed more times than there are books is a simple
example of a constraint that cannot be expressed by simple multiplicities; a more powerful capability is
required that may potentially require evaluation of functions of almost arbitrary complexity. The Object
Constraint Language provides this capability.

The constraint can be realized as an invariant on a book that specifies that that (the size of the (selection
of loans involving the book)) is less than or equal to (the number of copies of the book).

 invariant SufficientCopies:
 library.loans->select(book=self)->size() <= copies;

In more detail:

• an invariant is defined whose name is SufficientCopies

• within the invariant on a Book, self is the instance of Book being validated.

• library.loans, which is short for self.library.loans, navigates to the library and then
to all loans in the library.

• ->select(...) is a collection iteration over the loans. It selects each loan for which its argument
expression is true

• book=self, which is short for aLoan : Loan | aLoan.book = self, uses the aLoan
iterator over each loan to select those for which the book is the book being validated

• ->size() is a collection operation that just counts the number of selected loans

• <= copies, which is short for <= self.copies converts the count to true if it is consistent,
or false if inconsistent.

Close the Tutorial.xmi editor before modifying its meta-model. (Beware that a wide variety of unpleasant
errors can occur if the meta-model is changed after the model is loaded.)

Add the invariant shown below to the meta-model.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 106

[Text for cut and paste]

The required semantic is expressed by the SufficientCopies invariant constraint for a Book. For a
valid model the SufficientCopies invariant must always be true.

If you reopen the Tutorial.xmi editor and invoke Validate for the Library, you will now get a
validation error. Left click Details for details.

The Details identifies that the SufficientCopies invariant is not satisfied for the b2 book.

Alternatively you may invoke Live Validation so that validation happens automatically with error icons
and hover text identifying problems.

If you now change the first loan so that b1 is borrowed and then validate again, the problem is resolved.
It is all right for m3 to borrow the one copy of b1 and the two copies of b2.

Before introducing a further constraint of no duplicate loans, we will show how OCL expressions can
be exercised. OCL is a very powerful compact language; the example hides a loop over all the loans.
More complex examples may easily involve three or four levels of hidden loops on a single line, but may
equally easily have simple errors. It is therefore helpful to simplify expressions and use helper operations
and properties to modularise them. These may then be exercised using the OCL Console or debugged
using the OCL Debugger.

4.1.8. The OCL Console
The OCL Console supports interactive execution of an OCL expression in the context of a model instance.

To make the OCL Console visible, first make the Console view visible by Window->Show View-
>Console. Then right click on the Open Console and left click on Interactive Xtext OCL.

Alternatively, you can just invoke OCL->Show Xtext OCL Console from the right button menu within
the Sample Ecore Editor or Sample Reflective Ecore Editor.

../references/4100-metamodel2.oclinecore

Tutorials

Eclipse OCL 2020-06 (6.12.0) 107

The Xtext OCL console is new Xtext-based functionality that uses the Pivot binding.
It is faster, and more compliant with the OCL specification, than the OCL console that
uses the LPG parser and Ecore binding.

The Interactive Xtext OCL console comprises two main text panes. The upper pane displays results.
The lower pane supports entry of queries.

Left-click to select the Library in the Tutorial.xmi as the context for a query, and then type books
followed by a new line into the lower pane of the console.

The result of evaluating this query for the Library is shown.

Substantial OCL queries spanning many lines may be entered and so the cursor up and cursor down keys
move across lines. If you want to access an earlier query, you may use the Page Up or Page Down keys
to save typing them again.

You can examine the execution of the query within out example invariant by selecting each of the books
in turn and executing library.loans->select(book=self), to see that b1 has one Loan and
b2 two.

4.1.9. Helper Features and Operations
We will now introduce some helper attributes and operations to make the OCL clearer and provide a
richer meta-model API. Close the Tutorial.xmi editor and modify the meta-model to include the derived
loans property and the helper operation isAvailable(). Simplify the invariant to use the derived
property.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 108

[Text for cut and paste]

Note that the derived property must also be volatile to avoid problems when a model is loaded but has
no content.

Reopen Tutorial.xmi and select Book b2 so that the derived property is visible in the Properties view.

The helper operation can be evaluated in the Console view, after closing and reopening, by selecting
book b2 and typing isAvailable() for execution.

../references/4100-metamodel3.oclinecore

Tutorials

Eclipse OCL 2020-06 (6.12.0) 109

We will now add further helpers and constraints to enforce an at most two loans per member policy and
to require loans to be unique.

(Don’t forget to close Tutorial.xmi while changing its meta-model.)

[Text for cut and paste]

The additional books property may be evaluated in the OCL Console to show which books each member
has on loan. The property may also be seen in the Properties view.

Select the library again and invoke Validate from the right button menu. There are now two validation
failures.

../references/4100-metamodel4.oclinecore

Tutorials

Eclipse OCL 2020-06 (6.12.0) 110

4.1.10. Generating Java Code
We have shown how OCL may be used to enrich Ecore meta-models, how model instances can be created
and validated and how expressions can be evaluated, all without generating any Java code.

Exactly the same facilities are available if you do generate Java code and as a result you gain some
speed benefits. By default, in the Eclipse OCL 6.4.0 (Photon) release the generated Java code for OCL
is interpreted and so the speed gains occur only for the EMF models. In the Code Generation Tutorial,
a preliminary release of the OCL to Java code generator is described, giving an approximately five-fold
speed improvement and eliminating the need for run-time compilation.

Generating Java code is exactly the same as for any other EMF project. (Prior to EMF 2.8, there was one
important difference; you must explicitly set Operation Reflection to true. The default for this changed
to true in EMF 2.8.)

Select the Tutorial.ecore file and invoke New->Other... from the right button menu and select Eclipse
Modeling Framework and EMF Generator Model.

Select Next.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 111

Select Next.

Select Next.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 112

Select Load and Next.

Select Finish.

The Tutorial.genmodel editor opens.

Most of the default settings are suitable. The one that may not be is highlighted. Select the root Tutorial
and scroll down the Properties view and set Operation Reflection to true if it is not already true. (As
from EMF 2.8 the default is true.)

You may now invoke Generate Model Code from the right button menu of either Tutorial to generate
Java models that invoke OCL.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 113

4.1.10.1. Java Details
You can check that the OCL appears in your Java by looking at tutorial.util.TutorialValidator.java
where you’ll find the OCL expression as a String awaiting compilation at run-time, and the validate
invocation that triggers that compilation and execution.

protected static final String MEMBER__AT_MOST_TWO_LOANS__EEXPRESSION = "\n" +
 "\t\t\tloans->size() <= 2";

public boolean validateMember_AtMostTwoLoans(Member member, DiagnosticChain
 diagnostics, Map<Object, Object> context) {
 return
 validate
 (TutorialPackage.Literals.MEMBER,
 member,
 diagnostics,
 context,
 "http://www.eclipse.org/emf/2002/Ecore/OCL",
 "AtMostTwoLoans",
 MEMBER__AT_MOST_TWO_LOANS__EEXPRESSION,
 Diagnostic.ERROR,
 DIAGNOSTIC_SOURCE,
 0);
}

Similarly in BookImpl you will find the declaration of a cached delegate and the dynamic invocation
that provokes the first time compilation.

protected static final EOperation.Internal.InvocationDelegate
 IS_AVAILABLE__EINVOCATION_DELEGATE = ((EOperation.Internal)
 TutorialPackage.Literals.BOOK___IS_AVAILABLE).getInvocationDelegate();

public boolean isAvailable() {
 try {
 return (Boolean)
 IS_AVAILABLE__EINVOCATION_DELEGATE.dynamicInvoke(this, null);
 }
 catch (InvocationTargetException ite) {
 throw new WrappedException(ite);
 }
}

The OCL expression for the invocation delegate may be found in
TutorialPackageImpl.createPivotAnnotations().

addAnnotation
 (getBook__IsAvailable(),
 source,
 new String[] {
 "body", "loans->size() < copies"
 });

4.1.10.2. API Invariants
The invariants we have used so far do not contribute to the class API.

If you want to have fine grain control of which validations are performed, perhaps because in some
incremental context not all are appropriate, you may use the operation form of an invariant.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 114

 class Book
 {
 operation sufficientCopies(diagnostics : ecore::EDiagnosticChain,
 context : ecore::EMap<ecore::EJavaObject,ecore::EJavaObject>) : Boolean
 {
 body: library.loans->select(book=self)->size() <= copies;
 }
 attribute name : String;
 attribute copies : Integer;
 property library#books : Library;
 }

Note that the operation must have a Boolean return (true for valid) and diagnostics and context arguments.

4.1.11. Summary
To illustrate how to work with the OCL and Ecore as models we have

• Created an Ecore meta-model using the OCLinEcore text editor

• Created a dynamic model instance from that meta-model

• Enriched the meta-model with embedded OCL

• Used the embedded OCL while validating the model

• Queried the model using the Interactive OCL Console.

• Evaluated OCL embedded in the meta-model in the Console.

To use OCL and Ecore as generated Java models we have

• Generated Java that exploits the embedded OCL.

4.2. Complete OCL tutorial
This tutorial has been updated for Eclipse Mars: Eclipse 4.5, EMF 2.11, OCL 6.0.

• Some screenshots may be slightly out of date.

4.2.1. Overview
In this example you will

• Get an Overview of the Complete OCL language

• Load a Complete OCL document into a third party application

• Enhance Ecore validation for derived properties

• Validate an Ecore model using additional Complete OCL validation

• Enhance UML validation

• Validate a UML model using additional Complete OCL validation

• Enhance Xtext validation

• Validate an Xtext grammar using additional Complete OCL validation

4.2.2. Complete OCL Utility
By itself, OCL is almost useless, since without any models to operate on, the constraints cannot achieve
a great deal.

The simplest way to make OCL useful is to embed OCL expressions within a model to enrich the basic
structural characteristics of a model with more complex behavior. OCLinEcore provides this capability
for Ecore models. Papyrus provides comparable capabilities for UML models.

This tutorial introduces the Complete OCL language which may be used to provide a self-standing
document that complements a pre-existing meta-model.

4.2.3. Load Complete OCL Tutorial Example Project
All the material for this tutorial is available as part of the CompleteOCLTutorial Example project that
you may load by selecting New then Example... using the right button context menu of the Project

Tutorials

Eclipse OCL 2020-06 (6.12.0) 115

Explorer. This should give the New Example dialog in which you can select the OCL (OCL Constraint
Language) Plugins and the Complete OCL Tutorial and then Next.

Then Finish.

If you do not see these example projects, follow the Instructions for installing the OCL Editors.

The resulting project has a few test files.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 116

4.2.4. Complete OCL Language Overview
The Complete OCL language is described in detail in the Complete OCL section of this documentation.
In this tutorial we will provide just a brief overview of the language. If not already open, double click on
ExtraEcoreValidation.ocl to show the following text that provides examples of many important aspects
of the Complete OCL syntax.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 117

4.2.4.1. import declarations
The import statement is a serious omission from the OMG specification, since without it, any attempt
to align the Complete OCL constraints with external models relies on implementation-specific magic.
The import statement is therefore an Eclipse OCL extension that is likely to be part of a future OCL
specification revision.

Zero or more import statements may be present to specify the URIs of external model elements and
optionally alias names for those elements. In the example:

import ecore : 'http://www.eclipse.org/emf/2002/Ecore#/'

http://www.eclipse.org/emf/2002/Ecore specifies the URI of the Ecore metamodel and
#/ is the fragment URI navigating to the root element which is the Ecore package. The ecore specifies

Tutorials

Eclipse OCL 2020-06 (6.12.0) 118

an alias for this package, which happens to be the same as the name of the package. Within the Complete
OCL document, the imported model element may be referred to by its alias.

When using the Ecore and UML bindings, the Java API support for using Complete
OCL documents requires implementation-specific magic; the imported models must be
loaded into the package registry by the invoking code. Import statements are not used.

Prior to the Juno release, import statements were not understood and so there was a
usage conflict between Pivot and Ecore/UML bindings. Preparation of a Complete
OCL document using the Xtext editor, or usage with Pivot model and Xtext parser
required import statements. But re-use with the Ecore and UML LPG parser required
the import statements to be removed.

In Juno, the LPG parser ignores the import statements, so they may be left in.

4.2.4.2. package context declaration
A package context declaration may bracket declarations that complement model elements within the
complemented package.

package ecore

...

endpackage

This specifies that additional Complete OCL declarations will complement the pre-existing declarations
of the ecore package.

Multiple package context declarations may be used to complement multiple packages.

The package context declaration may be omitted if subsequent classifier context declarations have a fully
qualified name identifying the package.

4.2.4.3. classifier context declaration
A classifier context declaration introduces declarations that complement subsequent model elements
within the complemented classifier.

context EModelElement

The classifier context is terminated by a context or an endpackage.

4.2.4.4. feature definitions
Additional operations and properties may be defined for use within the Complete OCL document. These
features may be used as if they were part of the complemented meta-model.

def: asError(verdict : Boolean) : Boolean =
 if verdict then true else null endif

def: hasDerivation : Boolean = eAnnotations->select(source.startsWith(
 'http://www.eclipse.org/emf/2002/Ecore/OCL'))->notEmpty()

A definition starts with the new feature name, then the parameters for operations and the feature type
followed by an OCL expression that evaluates the operation or the property.

For properties such as hasDerivation there is very little difference between a property definition
hasDerivation and a parameter-less operation definition hasDerivation(). The property
definition and usage is two characters shorter and may seem more natural. The operation definition has
the advantage that it can be overloaded in derived classes.

4.2.4.5. class invariants
Invariants may be imposed on a complemented meta-model. The invariant comprises the name of the
invariant followed by an OCL expression that evaluates true when the invariant is satisfied.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 119

inv DerivationIsTransient: hasDerivation implies transient

These invariants are executed when a model is validated in an application that has loaded the
complementing Complete OCL document. The significance of this is explained in OCL->Load Document
Menu Action.

The readability of constraints can be significantly enhanced by the use of let-variables or the re-use, as
above, of the hasDerivation helper property.

4.2.4.6. custom messages
Eclipse OCL supports two extensions to invariants that allow the validation failure messages and
severities to be customized.

inv DerivationIsVolatile(
'"volatile" must be specified for derived feature ' + self.toString()):
asError(hasDerivation implies volatile)

The invariant name may be followed by a parenthesized OCL expression that computes a String to be
used as the validation failure message.

The severity of a validation failure may be controlled by the non-true value evaluated by the invariant
expression.

• a false return indicates a warning severity

• a null return indicates an error severity

• an invalid return indicates a fatal severity

See Custom Validation Messages for more details.

4.2.4.7. operation and property context declarations
Complete OCL also allows an incomplete operation or property declaration in the complemented meta-
model to be completed.

• initial value expressions or derived value constraints may be specified for properties.

• body expressions and precondition/postcondition constraints may be specified for operations.

These facilities are of limited use since OCLinEcore avoids the need for incomplete meta-models.

4.2.5. OCL->Load Document Menu Action
The major disclaimer in the above is that the Complete OCL only complements the complemented meta-
model in applications that have loaded the Complete OCL.

Prior to the Juno release, this meant that Complete OCL was only usable in custom Java applications
since no standard modeling applications would load the complementing document.

The OCL->Load Document menu action enables a Complete OCL document to be loaded into a wide
variety of applications.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 120

The OCL->Load Document menu action is added to the right button menu of applications with a
ResourceSet accessible from the current selection.

It has been observed that the extra menu action is not always immediately available,
so if you do not see it, hit Esc to cancel the menu, select something corresponding to
a model object and right click again.

In Mars, suitable applications are

• an editor generated from an Ecore meta-model

• the Sample Ecore Editor

• the UML Model Editor

• the Papyrus Model Editor

• your model editor

• an editor generated by Xtext

• the Xtext Editor

• the MWE2 Editor

• the OCLinEcore Editor

• your DSL editor

The OCL->Load Document menu action activates the Load Complete OCL Document dialog in which
you can browse Registered Complete OCL Documents, the File system or the Workspace for one or more
Complete OCL documents to load, or often more conveniently you can just Drag and Drop them from
an Operating System Explorer or an Eclipse Explorer.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 121

After clicking OK the documents load.

Behind the scenes, it is necessary to install global wrappers around all complemented
packages. These wrappers are sensitive to the ResourceSet for which complementing
has been requested and so although this incurs a small performance penalty for use of
the complemented packages in other applications, it should not affect the functional
behavior of other applications.

4.2.6. Example Complete OCL complements for Ecore
The Sample Ecore Editor has acquired many useful validation rules, so that for many usages just invoking
Validate is quite sufficient. But what if it isn’t? Perhaps you have some style conventions that you wish
to apply. Perhaps the built-in rules are not sufficient.

Prior to Juno and the OCL->Load Document capability, your only choice would be to check out the
Ecore Editor and create a custom variant. Now you can use Complete OCL to extend the Sample Ecore
Editor.

We will revisit the ExtraEcoreValidation.ocl document that we have just examined and use it to rectify
inadequate checking of derived properties by the Sample Ecore Editor. The document provides six
invariants, at least three of which detect problems that were encountered by users during the Indigo
release cycle.

4.2.6.1. DerivationIsVolatile
The EMF code generation templates have a simple treatment of volatile. Non-volatile variables have
an associated field which is returned by the get operation. This overrides any derivation that might be
supplied.

inv DerivationIsVolatile: asError(hasDerivation implies volatile)

We therefore want to diagnose that if an EStructuralFeature has a derivation then the volatile declaration
is also present to avoid the derivation being ignored.

This problem is so serious that the basic expression is wrapped in the asError operation to convert the
default true / false okay/warning severity into the true / null okay/error severity.

4.2.6.2. DerivationIsTransient
The EMF code generation templates have a similarly simple treatment of transient. Non-transient
variables will be serialized as part of a model save. This is not usually appropriate since the derived value
is redundant and can be recomputed when the model is loaded again.

inv DerivationIsTransient: hasDerivation implies transient

We therefore want to diagnose that a derivation is not serialized because of a default non-transient
declaration.

4.2.6.3. DerivationIsNotComposed
Composition is handled directly by EMF and it is not clear that it is appropriate to define an alternate
meaning of composition. It is pretty certain that EMF will not permit an alternate semantics.

inv DerivationIsNotComposed: asError(hasDerivation implies not containment)

Tutorials

Eclipse OCL 2020-06 (6.12.0) 122

We therefore want to diagnose if a derivation is attempting to specify alternate composition semantics
and report an error if this occurs.

4.2.6.4. DerivationWithOppositeHasOppositeDerivation
Opposites are also handled directly by EMF, but it is possible to replace this functionality. However if
the forward functionality is replaced, it is very unlikely that EMF’s default reverse functionality will be
appropriate.

inv DerivationWithOppositeHasOppositeDerivation:
 hasDerivation and eOpposite <> null implies eOpposite.hasDerivation

We therefore want to diagnose that a derivation that redefines the forward semantic of opposite also
redefines the corresponding reverse semantics.

4.2.6.5. DerivationIsUninitialized
An initial value for a property may be specified as a simple default value or as a derived expression.

inv DerivationIsUninitialized:
 hasDerivation implies defaultValue.oclIsUndefined()

We want to diagnose the occlusion of the derived expression by a default value.

4.2.6.6. DerivationDoesNotResolveProxies
Derived expressions are not references.

inv DerivationDoesNotResolveProxies:
 hasDerivation implies not resolveProxies

We can therefore diagnose whether the EMF proxy resolution logic is not suppressed.

4.2.7. Validating Ecore with additional Complete OCL
In the previous section we described additional Complete OCL validation constraints to detect problems
with inadequate Sample Ecore diagnosis of derived properties. We will now apply those constraints to
a test file.

Select EcoreTestFile.ecore and use the right button menu to Open With->Sample Ecore Model Editor.
This is probably the default for double-clicking with the left button, but if you open with the OCLinEcore
editor the required validation will not work (in Juno).

Now right click within the Sample Ecore Editor pane as described in OCL->Load Document Menu Action
and load ExtraEcoreValidation.ocl. An additional Resource is shown in the editor tree.

Select a model element such as the Bad package and use the right button menu to invoke Validate.

This shows an error. Depending on the order in which the constraints are evaluated, you may also see
one or two warnings. You should use the Validity View to see all failures.

If we now open EcoreTestFile.ecore with the OCLinEcore editor we can see that the transient and
volatile keywords are indeed missing.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 123

4.2.8. Editing the Complete OCL
You may edit the Complete OCL to experiment with alternate constraints or messages.

However the Complete OCL complements the meta-model and EMF does not support live modification
of meta-models. It is therefore necessary to restart the Sample Ecore Editor and Reload the modified
Complete OCL document in order to exploit the changes.

A solution for this may occur in a future release.

4.2.9. Example Complete OCL complements for UML
The extension of the Sample Ecore Editor validation described in Validating Ecore with additional
Complete OCL is applicable to any tree editor generated by EMF tooling.

The ExtraUMLValidation.ocl file provides a very simple style check that class names start with an
upper case letter.

The UML meta-model is imported and an invariant is specified for the Class classifier which is fully
qualified to avoid the need for a surrounding package context declaration.

You may open the PapyrusTestFile.uml with the UML Model Editor, load the
ExtraUMLValidation.ocl, select the Model and then Validate in the same way as for the Ecore example.

Unfortunately the Papyrus UML editor does not use the EValidator framework and so loading Complete
OCL documents into Papyrus fails to enhance validation capabilities. To use additional Complete OCL
functionality, you may load and validate in the UML Model Editor, then start the Papyrus editor which
will then show the problem markers on diagram elements. Alternatively you may use Validity View
concurrently with Papyrus.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 124

4.2.10. Example Complete OCL complements for Xtext
Xtext editors use EValidator and so a Complete OCL document may be loaded into an Xtext editor,
including Xtext itself, to provide enhanced validation.

The ExtraXtextValidation.ocl file provides some demonstration style checks.

The Xtext root package is imported and within the package declaration context for the xtext package,
invariants are supplied for four classes. These are all just examples of how constraints may use the Xtext
model. It is not suggested that users should use all of these constraints for real grammars.

4.2.10.1. NoAnonymousImports
context ReferencedMetamodel
inv NoAnonymousImports: alias <> null

This invariant diagnoses whether any import statements omit the as xxxx model name.

4.2.10.2. NoActions
context Action
inv NoActions : false

This invariant diagnoses whenever an {xxx} action statement is used.

4.2.10.3. CamelCaseName
context ParserRule
inv CamelCaseName : name.matches('[A-Z][A-Za-z]*')

This invariant verifies that the name of a parser rule starts with an upper case letter and uses only letters.

4.2.10.4. UpperName
context xtext::TerminalRule
inv UpperName : name = name.toUpperCase()

This invariant verifies that the name of a terminal rule is uppercase.

You may open the XtextTestFile.xtext with the Xtext Editor, load the ExtraXtextValidation.ocl and
then Validate in the same way as the Ecore example.

The additional validations appear as warning markers in the editor.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 125

Unfortunately Xtext does not have a nice toString() method for its Concrete Syntax
tree so the descriptions of erroneous elements are a little inelegant.

You may edit the Xtext test file to delete the “as ecore” in the import statement and see that the additional
Complete OCL constraints are contributing to the ongoing functionality of the editor.

4.2.11. Complete OCL Editor
The Complete OCL editor is invoked automatically for an existing or new *.ocl file. You can create an
empty file using either New->File or a partial content file using New->Other... followed by OCL and
Complete OCL File. The editor is Xtext-based and so has most of the facilities that you find in many
other Eclipse editors.

4.2.12. Royal and Loyal Example
The Royal and Loyal Example was first provided by Jos Warmer and Anneke Kleppe in The Object
Constraint Language: Getting Your Models Ready for MDA and has subsequently been used in many
tutorials. The example provides substantial examples of Complete OCL and Essential OCL. The models
are available by invoking New->Example...->OCL (Object Constraint Language) Plugins.

4.2.13. Summary
To illustrate how to work with Complete OCL we have

• Examined the Complete OCL language

• Examined constraints to rectify inadequate Ecore validation of derived features

• Loaded Complete OCL constraints to enhance validation of an Ecore model

• Loaded Complete OCL constraints to enhance validation of a UML model

• Loaded Complete OCL constraints to enhance validation of an Xtext grammar

4.3. Safe navigation tutorial
This tutorial demonstrates the new safe navigation facilities of Eclipse Mars; Eclipse 4.5, EMF 2.11,
OCL 6.0.

• Some screenshots may be slightly out of date.

4.3.1. Overview
In this example you will

• learn about navigation hazards

• switch on safe navigation validation

• use safe navigation to eliminate hazards

• use null free declarations to avoid many safe navigation hazards

4.3.2. References
This tutorial continues the OCLinEcore tutorial.

4.3.3. Evaluation hazards
Evaluation of OCL expressions can give invalid results for internal problems

• divide by zero

• index out of bound for an Ordered Collection

• most navigations of an operation or property from a null source

In this tutorial we will show how to eliminate the hazards of unsafe navigation from null.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 126

4.3.4. Enable Safe Navigation Diagnosis
Safe navigation is too new and experimental to be enabled by default. You must therefore enable
it explicitly by selecting the OCL->Unified Pivot Binding settings from the workspace Window-
>Preferences. You may alternatively set project-specific preferences from Project property pages.

Change the Potential null navigation and Redundant safe navigation to Error (or warning).

4.3.5. Safe Navigation Diagnosis
We will continue the OCLinEcore tutorial, which you may jump to the end of by New ->Example... -
>OCL Plugins ->OCLinEcore Tutorial.

Select Tutorial.ecore and open with the OCLinEcore Editor. 8 errors appear on 5 lines.

A bit depressing; 5 out of 7 OCL lines have hazards on a long standing example. The problems arise
wherever a null is permitted.

Non-collection values may be null whenever the multiplicity is implicitly or explicitly MyType[?], which
permits either an instance of MyType or null. The alternative MyType[1] prohibits a null value. The
example metamodel is comparatively good with many properties such as Loan::book defined as as
Book[1]. However Loan::date is Date[?] which seems unwise; why should a Loan have an unknown
Date? Book::library is correctly Library[?] since there is no reason why Books may not found in
Bookshops or Homes.

We will examine the two errors after expanding short forms.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 127

self.library.loans violates the UnsafeSourceCannotBeNull constraint because the source,
self.library, can be null as a consequence of the library[?] multiplicity.

Collection values, which are almost the raison d’etre of OCL, are a disaster safe-navigation-wise. Any
OCL collection may contain a null value and so any OCL iteration may have a null iterator. Consequently
the implicit iterator is typed as Loan[?] and the source of loan.book is also unsafe.

4.3.6. Safe Navigation Operators
Languages such as Groovy have introduced a safe navigation operator to mitigate problems with null
navigation. It is proposed that OCL 2.5 will do so too. Eclipse OCL provides a prototype implementation.

OCL provides two navigation operators

• the object navigation operator "."

• the collection navigation operator "->".

Safe navigation adds

• the safe object navigation operator "?."

• the safe collection navigation operator "?->".

The safe object navigation operator replaces any null navigation by null. Where a is an object value,
a?.b is therefore equivalent to

let a' = a in if a' <> null then a'.b else null endif

The safe collection navigation operator eliminates all null terms from collection sources. a?->b is
therefore equivalent to

a->excluding(null)->b

The safe implicit collection navigation operator similarly eliminates all null terms from collection. Where
a is a collection value, a.b is therefore equivalent to

a->excluding(null)->collect(b)

We may use these operators to make the warnings go away.

The first replacement for library?.loans is reasonable. The library really can be null and so,
if it is null, the shortform execution is null->select(book = self). Use of a collection operator
on a non-collection object such as null causes oclAsSet() to be invoked which for null gives giving
an empty set. Therefore null.oclAsSet()->select(...) selects elements from an empty set
ensuring that the loans from a null library are an empty collection.

The second replacement for loans?->select makes the problem go away, but in practice requires
almost every collection navigation operator to be prefixed lexically by “?” and operationally by an
exclude(null).

4.3.7. Null-free Collections
OCL and UML support four permutations of ordered/not-ordered, unique/not-unique to give useful
Collection behaviors.

OCL unfortunately allows any collection to contain null, even though null collection elements are
undesirable in almost all applications, and as we have just seen safe, navigation imposes a redundant
exclude(null) on many collection accesses.

The need for exclude(null) can be eliminated if OCL collections can be declared to be null-free,
potentially giving 8 rather than 4 possible collection behaviors.

UML and Ecore declarations of collections such as MyType[2..*] {ordered} support bounds,
whereas Complete OCL supports nested collections such as Set(Sequence(MyType)). UML

Tutorials

Eclipse OCL 2020-06 (6.12.0) 128

alignment for OCL 2.5 supports nested bounded collections such as Set(Sequence(MyType[*])
[+]); a Set of one or more Sequences of zero or more MyTypes.

We can extend this notation by suffixing an element multiplicity following each collection multiplicity
so that each element may be

• non-null, explicitly [...|1]

• implicitly or explicitly null/not-null [...|?]

It is not useful to have null loans so we can change the multiplicity of Library::loans to Loan[*|
1]; zero or more Loan objects where each loan is not-null.

The problem with the iterator is now replaced by one with the iteration. The SafeSourceCanBeNull
constraint is now violated because the source library?.loan cannot provide null elements as a
consequence of the [==|1==]* multiplicity. Note that the extended multiplicity is shown in messages and
hover text to assist in understanding null-ness.

Revert back to loans->select and the new problem goes away; changing the multiplicity to declare
a null-free collection makes the original expression safe without an additional safe navigation operator.

4.3.8. Declaring Null-free Collections in Ecore
We have just seen an extension to the multiplicity syntax so that in OCLinECore a null-free collection
may be declared by the [...|1] extended per-element multiplicity.

Ecore does not support null-free collections and so behind the scenes this is represented by an
EAnnotation.

 <eStructuralFeatures xsi:type="ecore:EReference" name="loans" ordered="false"
 upperBound="-1" eType="#//Loan" containment="true">
 <eAnnotations source="http://www.eclipse.org/OCL/Collection">
 <details key="nullFree" value="true"/>
 </eAnnotations>
 </eStructuralFeatures>

4.3.9. Declaring Null-free Collections in UML
UML does not support null-free collections and so an OCLforUML profile is introduced to remedy this
and other deficiencies.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 129

A Collection stereotype may be applied to a TypedElement such as a Parameter or Property so that
the Collection::isNullFree property defines the required null-free-ness.

Applying a stereotype to all collection properties and parameters is a little tedious and may be avoided
by instead applying the Collections stereotype to Classes or even Packages. The null-free-ness is
determined by looking first for a Collection stereotype, then searching the container hierarchy for the
nearest Collections stereotype.

A single Collections stereotype application on a Package is sufficient to declare all its collections null-
free This is often appropriate, however if any collections can contain nulls, the package-level Collections
stereotype must be overridden for each TypedElement where the collection may contain a null.

4.4. Code Generation tutorial
This tutorial has been updated for Eclipse Mars: Eclipse 4.5, EMF 2.11, OCL 6.0.

• Some screenshots may be slightly out of date.

The direct OCL to Java Code generator was a very experimental functionality for the Juno release. It has
been substantially rewritten for Kepler. Some optimisations have been activated for Luna and Mars.

In this tutorial we will continue the OCLinEcore tutorial and show how to get a direct Java representation
of the Ecore model avoiding the need for run-time compilation.

4.4.1. Load OCLinEcore Tutorial Example Project
All the material for this tutorial is available as part of the OCLinEcore Example project that you may
load by selecting New then Example... using the right button context menu of the Project Explorer. This
should give the New Example dialog in which you can select the OCL (OCL Constraint Language)
Plugins and the OCLinEcore Tutorial.

4.4.2. Direct code
In Generating Java Code we saw how to create a genmodel and how to generate code from it that realizes
OCL as text strings in the Java implementation files. These text strings are lazily compiled at run-time.

Whether to generate OCL as text strings for interpretation or to convert directly to Java is determined by
the Code Generation Mode. This may be configured using the project property or workspace preference
as described in Code Generation Mode. So use Window->Preferences->OCL to change the Realisation
of OCL embedded in Ecore models setting to Generate Java code in *Impl classes.

Now open Tutorial.genmodel, select the root resource and invoke Generate Model Code to (re)generate
the Java code. This will take somewhat longer as additional work items show that the OCL is being
compiled and that Xtend templates are generating additional Java code.

Note that you must close Tutorial.genmodel while changing the Code Generation
Mode.

You may also need to delete the autogenerated *Impl files if you change from one
mode of generation to another.

That is all there is to it. Your model code is now 100% Java; no OCL parsing is needed at run-time.

4.4.3. Using a GenAnnotation
Changing the default genmodel setting is a little dangerous since the change will affect any other
genmodel activities you perform. It is therefore advisable to reset the workspace preference setting to its
default and use a GenAnnotation to embed the setting in the genmodel.

The easiest way to create the GenAnnotation that ensure direct code generation regardless of workspace
or project preferences, is to paste the following three lines into your genmodel just above the
foreignModel or genpackages element.

 <genAnnotations source="http://www.eclipse.org/OCL/GenModel">
 <details key="Use Delegates" value="false"/>
 </genAnnotations>

Of course, if you want to enforce delegation you should set the value to true.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 130

If you don’t like cutting and pasting into XMI files, you can achieve the same effect with the GenModel
editor by:

• Enable annotation display using Generator->Show Annotations

• Invoke Annotate from the right button context menu of the genmodel root element

• Use the Properties View to set the GenAnnotation source to http://www.eclipse.org/OCL/
GenModel

• Invoke Add Detail from the right button context menu of the GenAnnotation

• Use the Properties View to set the Detail key to Use Delegates

• Use the Properties View to set the Detail value to false

A further Use Null Annotations GenAnnotation may be used to control whether @NonNull and
@Nullable annotations are emitted in the generated code.

 <genAnnotations source="http://www.eclipse.org/OCL/GenModel">
 <details key="Use Delegates" value="false"/>
 <details key="Use Null Annotations" value="true"/>
 </genAnnotations>

4.5. Debugger tutorial
This tutorial has been updated for Eclipse Mars: Eclipse 4.5, EMF 2.11, OCL 6.0.

• Some screenshots may be slightly out of date.

In this tutorial we will continue the OCLinEcore tutorial and show how to use the OCL debugger to debug:

• constraints typed manually in the Console View

• embedded OCLinEcore validation failures from the Validity View

• Complete OCL validation failures from the Validity View

4.5.1. Load OCLinEcore Tutorial Example Project
The material for the first two parts of this tutorial is available as part of the OCLinEcore Example project
that you may load by selecting New then Example... using the right button context menu of the Project
Explorer. This should give the New Example dialog in which you can select the OCL (OCL Constraint
Language) Plugins and the OCLinEcore Tutorial.

The material for the third parts of this tutorial is available as part of the CompleteOCL Example project
that you may load in a similar way.

4.5.2. The OCL Debugger
The OCL debugger is a customization of the Eclipse debugger framework, so most of its functionality
should present few surprises to those familiar with the Java debugger.

There is:

• a Stack View that shows the current line number in nested Evaluation Environments

• a Variables View in which local and intermediate variables can be re-examined

• an Editor in which the source is highlighted to show the next AST node to be evaluated

Tutorials

Eclipse OCL 2020-06 (6.12.0) 131

• an Outline in which the source is shown in tree form

• a Breakpoints View in which breakpoints can be controlled

We will demonstrate some of these facilities by debugging a simple example.

4.5.3. Very Simple Debug session
We will debug the execution of the OCL expression self.name on an EPackage.

4.5.3.1. Starting the debugger
Double click on model/Tutorial.ecore to open the model and expand the top entry to show the EPackage.

If the model opens with another editor, close it, and open with the Sample Ecore Editor by selecting
model/Tutorial.ecore and then Open With->Sample Ecore Model Editor from the context menu.

Select the tutorial EPackage and invoke OCL->Show Xtext OCL Console from the context menu.
(Wait a second or two.)

At the bottom of the Console window type self.name, then hit the Enter key. Then hit the Page Up key
to redisplay your entry.

The Console runs an evaluation automatically after hitting Enter and shows the evaluation result:
'tutorial'.

The Console View provides the two pieces of information necessary to run the OCL debugger:

• an EObject to be used as OCL’s self; the Console shows the current selection just below its tool bar

• an OCL expression to execute

Start the debugger by clicking the debug icon in the Console View tool bar. (Wait a second or two.)

The debugger perspective should appear automatically. If it doesn’t, you can open the Debug perspective
manually by invoking Window->Perspective->Open Perspective->Debug from the Eclipse menu bar.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 132

A Complete OCL document is created automatically to encapsulate the OCL expression inside as an
additional operation for the type of the self object. This document is shown in the editor; it is readonly.

The stack display shows the context as line 5 of oclDebugExpression() in the synthesized Complete
OCL document.

Select the oclDebugExpression() line in the stack display; self is highlighted in the Complete OCL
document, since the next evaluation to perform is to evaluate the VariableExp AST node that performs
the self access.

The Variables View shows two variables.

• self is the OCL self object

• $pc is a synthetic variable representing the current Program Counter

The Outline View displays a slightly trimmed OCL Abstract Syntax tree; you may choose to close this
view. In a future release it may change to support breakpoints. The view shows

• an Import for ecore

• a Class named EPackage containing

• an Operation named oclDebugExpression containing

• an ExpressionInOCL whose OwnedBody is a PropertyCallExp for name and whose source is

• a VariableExp for self.

The outline shows fuller type signatures to assist in debugging.

4.5.3.2. Exploring Variables
The Variables View provides an ability to drill down arbitrarily to examine the data available to your
program.

The left column of the display presents the name of a variable and may be expanded to navigate to parts
of the data referenced by the variable. Part name displays are currently shown 0-based, rather than 1-
based as in OCL.

The right column variously displays the type of parts that can be expanded and the values of those that
cannot. An OCL syntax is used so Strings appear in single quotes and Collections use names such as
OrderedSet.

The bottom line shows a textual rendering of the selected variable. For many types of data a helpful
rendering is available. For others the fallback is to the default Java toString() functionality. The text can
be customized by

• the org.eclipse.ocl.pivot.utilities.getText() method if the object implements Labelable

• the LabelUtil.QUALIFIED_NAME_REGISTRY if an org.eclipse.ocl.pivot.label_generator
extension point has a registration for the objects' class

Click on the expand/collapse icon to the left of $pc to expand it and allow inspection of the OCL AST.
A VariableExp is next to execute and its $pc.referredProperty or $pc.type may be examined to see
more program detail.

Click on the expand/collapse icon to the left of self, which is an ecore::EPackage, to expand it and shows
its fields such as name which is 'tutorial'.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 133

Click on the expand/collapse icon to the left of self.eClassifiers to show the four classifiers.

Select self.eClassifiers[1] so that the bottom line display shows that the second is named Book.

The Variables View provides more insight that the Sample Ecore Properties View, so you may find it
convenient to use a trivial OCL debugger session using self as the OCL expression to browse arbitrary
model data.

4.5.3.3. Stepping Execution
Click F5 or the Step Into icon to advance execution by one AST node evaluation.

The editor now highlights .name; $pc shows a PropertCallExp as the next execution.
$pc.referredProperty shows that it is ecore::ENamedElement:name.

An additional synthetic variable $owwnedSource shows the result of the self evaluation that forms the
source term of the PropertyCallExp. As expected this is the same as self.

Click F5 or the Step Into icon again to advance execution by a further AST node evaluation.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 134

The whole of self.name is highlighted and $pc shows that the overall ExpressionInOCL is about to be
evaluated. The synthetic $ownedBody for its input shows that self.name evaluated to 'tutorial'.

4.5.4. Debugging a Validation failure
OCL is useful for elaborating models with additional well-formedness rules, but when these fail it can be
difficult to understand why a failure occurred, particularly if the bug is in the OCL rather than the model.
We will now show how the OCL debugger can be used to debug a validation failure.

Double click on model/Tutorial.xmi to open the model, and expand the top two entries to show some
detail.

If the model opens with another editor, close it, and open with the Sample Reflective Ecore Model Editor
by selecting model/Tutorial.xmi and then Open With->Sample Reflective Ecore Model Editor from
the context menu.

Select the first line and invoke Validate from the context menu. (Wait a second.) Optionally click on
Details.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 135

These error messages provide insufficient precision to really understand the problems, so click OK to
dismiss the popup then select Book b2, which has an error, and invoke OCL->Show Validity View to
provide more insight.

If the Validity View shows question marks rather than red/green/amber status decorations, Click the Run
icon in the Validity View tool bar.

Click the Pin icon in the Validity View tool bar to avoid thrashing whenever you change mouse selection.

Uncheck the top ecore line in the Metamodel Constraints since we are not interested in the successful
Ecore metamodel constraints just those in the tutorial metamodel.

Similarly uncheck the bottom tutorial line in the Model Elements since we are not interested in the
successful metamodel, just those in the tutorial model.

Click on the + tool bar icon so that the detail is shown.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 136

We will now debug the failure of the tutorial::Book::SufficientCopies on the Library lib::Book b2
model element. Select either of the leaf warnings, that is either the tutorial::Book::SufficientCopies
child of Book b2 in the left hand pane, or the Library lib::Book b2 child of SufficientCopies in the
right hand pane, and invoke Debug Single Enabled Selection. Wait a second or two and the debugger
starts. If it doesn’t, open the Debugger perspective manually.

Select the oclDebuggerExpression() stack line. The debugger shows library.loans->select((book =
self))->size() <= copies with l highlighted as the next execution. The outline shows that the VariableExp
for self is next to execute. The library in the source code is a shorthand for self.library so highlighting
l is an approximation to highlighting the invisible source. in front of library. $pc in the Variables View
also shows a VariableExp for self as the next instruction.

Click F5 or Step Into and $pc advances and the editor highlight changes to library.

Click F5 or Step Into a few more times and the highlight will show the iteration within the select body,
allowing each state of each element to be examined to determine why the exhibited behavior occurs.

Continue to Click F5 or Step Into until ->size() is highlighted.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 137

Expanding $ownedSource in the Variables View shows the Set of three selected Loans each of which
has the same book as self.
Click F5 or Step Into three more times until <= is highlighted.

We can now see that the $ownedSource, left hand side, of the comparison is 3 and the
$ownedArguments[0] right hand side is 2. A further step and we see the result as $ownedBody
demonstrating why the validation failed.

4.5.5. Debugging Complete OCL validation failure
The two preceding examples displayed their source text in a synthesized Complete OCL document.

In this example we debug a failure for which the OCL is already available in a Complete OCL document.

Open the model/EcoreTestFile.ecore from the Complete OCL tutorial project using the Sample Ecore
Editor.

Within the Ecore editor use OCL->Load Document and then drag and drop model/
ExtraEcoreValidation.ocl and click OK to dismiss the pop up.

Again within the Ecore editor use OCL->Show Validity View to see the constraint/element pairs. If the
Validity View was already visible, close it and re-show it since in Mars addition of a Complete OCL
document fails to refresh correctly.

In the Validity View, uncheck the ecore Metamodel Constraint contributions retaining just the
ExtraEcoreValidation.ocl contribution. Click the plus icon in the Metamodel Constraint tool bar to
expand all entries.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 138

Select the bottom right BadClass model element below the DerivationIsVolatile constraint and invoke
Debug Single Enabled Selection. from the context menu (wait a second or two). The debugger should
start, if not open the Debugger perspective manually.

In Mars, select the DerivationIsVolatile stack line to refresh the selection.

Both asError and hasDerivation are OCL-defined so as you step you successively navigate into the
defined property and operation.

4.5.6. Console experiments
While debugging, the original OCL expression from the Console is presented in a Complete OCL editor.
This editor is readonly so you cannot edit it to correct mistakes or to experiment.

You may however safely use the OCL Console to perform further experiments. Select a suitable self
object in the Variable View and cut and paste to prepare your experimental OCL expression.

In Mars, Console selections cannot be Collections so you are unfortunately restricted to single objects.

4.5.7. Longer range stepping
In the examples above we have only used F5 or Step Into.

In principle the tedious stepping through an iteration can be avoided by F7 or Step Return which should
terminate on the popped evaluation environment at the end of the iteration. This facility has not been
adequately tested in Mars.

If you arrange for some line breaks in your source text you can use F6 or Step Next to proceed until the
line number advances. This facility has not been adequately tested in Mars. Line breaks can be added in
the OCL Console using Shift and Enter together.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 139

4.5.8. Break points
When debugging OCL from Complete OCL documents, the original document is a suitable source for
the debugger and so line breakpoints can be set. This facility has not been adequately tested in Mars

4.6. Validation tutorial
This tutorial has been updated for Eclipse Mars: Eclipse 4.5, EMF 2.11, OCL 6.0.

• Some screenshots may be slightly out of date.

The standard EMF validation facilities are very useful for avoiding model errors and work well when the
models are correct or at least nearly correct. In this tutorial we show how the Validity View can provide
greater insight into what works and what doesn’t.

We will show how to

• identify all constraints applicable to a particular model element

• show the constraint text

• show the validation status

• identify all model elements constrained by a particular constraint

• show the constraint text

• show the validation status

• filter the displayed model elements and constraints

• by name

• by status

• by model

• by metamodel

• launch an OCL debugger for a particular model element and constraint

4.6.1. Load Complete OCL Tutorial Example Project
The material for this tutorial is available as part of the Complete OCL Example project that you may
load by selecting New then Example... using the right button context menu of the Project Explorer. This
should give the New Example dialog in which you can select the OCL (OCL Constraint Language)
Plugins and the Complete OCL Tutorial.

4.6.2. Load Test Model
Double click on model/XMITestFile.xmi to open the model and expand the top entry to show the
EPackage.

If the model opens with another editor, close it, and open with the Sample Reflective Ecore Editor by
selecting model/Tutorial.ecore and then Open With->Sample Reflective Ecore Model Editor from
the context menu.

Within the editor invoke OCL->Load Document to load model/ExtraEcoreValidation.ocl and again
to load model/ExtraXMIValidation.ocl

Your source ResourceSet now contains four resources

• the XMITestFile.xmi model

• the EcoreTestFile.ecore metamodel

Tutorials

Eclipse OCL 2020-06 (6.12.0) 140

• the ExtraXMIValidation.ocl additional model validation rules

• the ExtraEcoreValidation.ocl additional metamodel validation rules

4.6.3. EMF Validation
Select the XMITestFile.xmi and invoke Validate from the context menu. Click OK to dismiss.

Select the EcoreTestFile.ecore and invoke Validate from the context menu. Click OK to dismiss.

The above results clearly show problems, but not necessarily all the problems and do not show what was
actually done. Sometimes validation of a model element terminates prematurely once an error has been
reported. On other occasions some constraints are not run and so no corresponding errors are detected.

The above limitations are not a problem, when everything is working well, but when you have a
misunderstanding as to what is being validated, a bad day can get very much worse.

4.6.3.1. Validity View Validation
Select OCL->Show Validity View from the editor context menu.

The left hand pane shows the root model elements in a similar way to the Sample Reflective Ecore Editor.

The right hand pane shows the root metamodel constraint sources.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 141

Each may be expanded using the control at the start of each line or the more general controls in the tool
bars.

Important tip: click the pin icon in the Validity Model tool bar to stop the Validity View chasing your
mouse selections.

You may now obtain the more detailed validation results by clicking on the green Run icon in the main
Validation View tool bar.

Use the hover text to see how many validations have been rounded up into each root display.

4.6.3.2. Filtering by Root Models
There are 34 results in total, which is more than we want to look at, even for this very small model.

The ecore in http://www.eclipse.org/emf/2002/Ecore root constraint is contributing 30 successes
without problem, so we ignore it by unchecking the enable checkbox preceding it.

The model is so simple that we can now expand it completely. Click on the + expand icons.

In the left hand pane, the black text labels show the hierarchy of model elements. At the leaves in blue
italic text are the constraints applicable to the model element.

In the right hand pane, the blue italic labels show the hierarchy of constraints. At the leaves in black text
are the constrained model elements.

You can hover over constraints to see the details and invoke Show In Editor to navigate to them.

4.6.3.3. Filtering by Status
The many successes are often of limited interest, so we may concentrate on Errors by invoking Show all
Errors from the Filtering pull down towards the right of the main Validation View tool bar.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 142

Having found an error of interest we can see it in context.

• Select the Bad::BadClass::uncachedDerived error in the Constraints pane

• remove the Show all Errors filtering using the Filtering pull down

• enable the view of all constraints by clicking the tick icon in the Model Constraint pane tool bar.

This shows that the constraint is validated five times with one error, two warnings and two successes.

Double clicking on the erroneous child constraint makes the constraint visible in the right hand pane,
showing that the constraint is only applied to this one model element.

4.6.3.4. Debugging constraints
Maybe it’s time for some debugging. Select the leaf constraint below a model element, or the leaf element
below a constraint and invoke Debug Single Enabled Selection to start the OCL debugger to step through
the problematic constraint on the problematic model element. (Select the debugger perspective explicitly
if it doesn’t open automatically.)

Use of the OCL debugger is described in the Debugger Tutorial.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 143

4.7. Working with Classic OCL

4.7.1. Overview
This tutorial illustrates the various services provided by the Classic Eclipse OCL implementation.

4.7.2. References
This tutorial assumes that the reader is familiar with the Eclipse extension point architecture. There is an
abundance of on-line help in Eclipse for those unfamiliar with extension points.

To see the complete source code for the examples shown in this tutorial, install the OCL Interpreter
Example plug-in into your workspace.

Other references:

• For an environment in which to test the OCL expressions that you will create in this tutorial, install
the Library Metamodel example.

• OCL 2.0 specification.

4.7.3. Parsing OCL Expressions
The first responsibility of the OCL interpreter is to parse OCL expressions. One of the purposes of parsing
an expression is to validate it: if it can be parsed, it is well-formed (the parser automatically validates the
expression against the semantic well-formedness rules).

The main entrypoint into the OCL API is the OCL class. An OCL provides an autonomous OCL parsing
environment. It tracks all constraints that are parsed in this environment, including the definitions of
additional operations and attributes. The OCL.newInstance() factory method is used to create a new
OCL with an EnvironmentFactory that provides the binding to a particular metamodel (Ecore or
UML). In this tutorial, we will use the Ecore binding.

To parse a query expression, we will use the OCLHelper object, which provides convenient operations
for parsing queries and constraints (intended for processing constraints embedded in models).

../references/examples/exampleOverview.html
http://www.omg.org/spec/OCL
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/OCL.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/helper/OCLHelper.html

Tutorials

Eclipse OCL 2020-06 (6.12.0) 144

boolean valid;
OCLExpression<EClassifier> query = null;

try {
 // create an OCL instance for Ecore
 OCL<?, EClassifier, ?, ?, ?, ?, ?, ?, ?, Constraint, EClass, EObject> ocl;
 ocl = OCL.newInstance(EcoreEnvironmentFactory.INSTANCE);

 // create an OCL helper object
 OCLHelper<EClassifier, ?, ?, Constraint> helper = ocl.createOCLHelper();

 // set the OCL context classifier
 helper.setContext(EXTLibraryPackage.Literals.WRITER);

 query = helper.createQuery("self.books->collect(b : Book | b.category)->asSet()");

 // record success
 valid = true;
} catch (ParserException e) {
 // record failure to parse
 valid = false;
 System.err.println(e.getLocalizedMessage());
}

The example above parses an expression that computes the distinct categories of Book s associated with
a Writer. The possible reasons why it would fail to parse (in which case a ParserException is
thrown) include:

• syntactical problems: misplaced or missing constructs such as closing

parentheses, variable declarations, type expressions, etc.

• semantic problems: unknown attributes or operations of the context

type or referenced types, unknown packages, classes, etc.

4.7.4. Parsing OCL Constraints
OCL is primarily intended for the specification of constraint s. Unlike queries, there are a variety of
different kinds of constraints used in different places in a model. These include classifier invariants,
operation constraints, and attribute derivation constraints. The OCLHelper can parse these for us.

Let’s imagine the confusion that arises from a library that has more than one book of the same title (we
are not intending to model copies). We will create an invariant constraint for @Book@s stipulating that
this is not permitted:

Constraint invariant = null;

try {
 // set the OCL context classifier
 helper.setContext(EXTLibraryPackage.Literals.LIBRARY);

 invariant = helper.createInvariant(
 "Library.allInstances()->forAll(b1, b2 | b1 <> b2 implies b1.title <> b2.title)");
} catch (ParserException e) {
 // record failure to parse
 System.err.println(e.getLocalizedMessage());
}

Parsing constraints differs from parsing query expressions because they have additional well-formedness
rules that the parser checks. For example, an invariant constraint must be boolean-valued, an attribute
derivation constraint must conform to the type of the attribute, and such constructs as @pre and
oclIsNew() may only be used in operation post-condition constraints.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 145

4.7.5. Evaluating OCL Expressions and Constraints
More interesting than parsing an OCL expression or constraint is evaluating it on some object. The
Query interface provides two methods for evaluating expressions. Queries are constructed by factory
methods on the OCL class.

• Object evaluate(Object)

evaluates the expression on the specified object, returning the result. The caller is expected to know the
result type, which could be a primitive, EObject, or a collection. There are variants of this method
for evaluation of the query on multiple objects and on no object at all (for queries that require no "self"
context).

• boolean evaluate(Object)

This method evaluates a special kind of OCL expression called a constraint. Constraints are distinguished
from other OCL queries by having a boolean value; thus, they can be used to implement invariant or pre/
post-condition constraints. There are variants for checking multiple objects and for selecting/rejecting
elements of a list that satisfy the constraint.

In order to support the allInstances() operation on OCL types, the OCL API provides the

setExtentMap(Map<CLS, ? extends Set<? extends E>> extentMap) method. This
assigns a mapping of classes (in the Ecore binding, EClass es) to the sets of their instances. By default,
the OCL provides a dynamic map that computes the extents on demand from the contents of a Resource.
An alternative extent map can be found in org.eclipse.ocl.ecore.opposites.ExtentMap
. We will use a custom extent map in evaluating a query expression that finds books that have the same
title as a designated book:

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/Query.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/Query.html#evaluate(org.eclipse.emf.ecore.EObject)
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/Query.html#check(org.eclipse.emf.ecore.EObject)
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/OCL.html#setExtentMap(java.util.Map)
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/ecore/opposites/ExtentMap.html

Tutorials

Eclipse OCL 2020-06 (6.12.0) 146

// create an extent map
Map<EClass, Set<? extends EObject>> extents = new HashMap<EClass, Set<? extends EObject>>();
Set<Book> books = new HashSet<Book>();
extents.put(EXTLibraryPackage.Literals.BOOK, books);

// tell the OCL environment what our classifier extents are
ocl.setExtentMap(extents);

Library library = EXTLibraryFactory.eINSTANCE.createLibrary();

Book myBook = EXTLibraryFactory.eINSTANCE.createBook();
myBook.setTitle("David Copperfield");
books.add(myBook);

// this book is in our library
library.add(myBook);

Writer dickens = EXTLibraryFactory.eINSTANCE.createWriter();
dickens.setName("Charles Dickens");

Book aBook = EXTLibraryFactory.eINSTANCE.createBook();
aBook.setTitle("The Pickwick Papers");
aBook.setCategory(BookCategory.MYSTERY_LITERAL);
books.add(aBook);
aBook = EXTLibraryFactory.eINSTANCE.createBook();
aBook.setTitle("David Copperfield");
aBook.setCategory(BookCategory.BIOGRAPHY_LITERAL); // not actually, of course!
books.add(aBook);
aBook = EXTLibraryFactory.eINSTANCE.createBook();
aBook.setTitle("Nicholas Nickleby");
aBook.setCategory(BookCategory.BIOGRAPHY_LITERAL); // not really
books.add(aBook);

dickens.addAll(books); // Dickens wrote these books
library.addAll(books); // and they are all in our library

// use the query expression parsed before to create a Query
Query<EClassifier, EClass, EObject> eval = ocl.createQuery(query);

Collection<?> result = (Collection<?>) eval.evaluate(dickens);
System.out.println(result);

The same Query API is used to check constraints. Using the library and extents map from above
and the constraint parsed previously:

eval = ocl.createQuery(constraint);

boolean ok = eval.check(library);

System.out.println(ok);

4.7.6. Implementing Content Assist
The OCLHelper interface provides an operation that computes content-assist proposals in an abstract
form, as Choice s. An application’s UI can then convert these to JFace’s ICompletionProposal
type.

Obtaining completion choices consists of supplying a partial OCL expression (up to the cursor location
in the UI editor) to the OCLHelper::getSyntaxHelp(ConstraintKind, String) ,
java.lang.String) method. This method requires a ConstraintKind enumeration indicating the type
of constraint that is to be parsed (some OCL constructs are restricted in the kinds of constraints in which
they may be used).

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/helper/Choice.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/helper/OCLHelper.html#getSyntaxHelp(org.eclipse.ocl.helper.ConstraintKind

Tutorials

Eclipse OCL 2020-06 (6.12.0) 147

helper.setContext(EXTLibraryPackage.Literals.BOOK);

List<Choice> choices = helper.getSyntaxHelp(
 ConstraintKind.INVARIANT,
 "Book.allInstances()->excluding(self).");

for (Choice next : choices) {
 switch (next.getKind()) {
 case OPERATION:
 case SIGNAL:
 // the description is already complete
 System.out.println(next.getDescription());
 case PROPERTY:
 case ENUMERATION_LITERAL:
 case VARIABLE:
 System.out.println(next.getName() + " : " + next.getDescription();
 break;
 default:
 System.out.println(next.getName());
 break;
 }
}

A sample of the output looks like:

author : Writer
title : String
oclIsKindOf(typespec : OclType)
oclAsType(typespec : OclType) : T
...

The choices also provide the model element that they represent, from which a more sophisticated
application can construct appropriate JFace completions, including context information, documentation,
etc.

4.7.7. Working with the AST
The OCL Interpreter models the OCL language using EMF’s Ecore with support for Java-style
generic types. The bindings of this generic Abstract Syntax Model for Ecore and for UML substitutes
these metamodels' constructs for the generic type parameters, plugging in the definitions of the
“classifier”, “operation”, “constraint”, etc. constructs of the OCL vocabulary. These bindings, then,
support persistence in or as an adjunct to Ecore and UML models.

For processing the abstract syntax tree (AST) parsed from OCL text, the API supplies a Visitor
interface. By implementing this interface (or extending the AbstractVisitor class, which is
recommended), we can walk the AST of an OCL expression to transform it in some way. This is exactly
what the interpreter, itself, does to evaluate an expression: it just walks the expression using an evaluation
visitor. For example, we can count the number times that a specific attribute is referenced in an expression:

helper.setContext(EXTLibraryPackage.Literals.BOOK);

OCLExpression<EClassifier> query = helper.parseQuery(
 "Book.allInstances()->select(b : Book | b <> self and b.title = self.title)");

AttributeCounter visitor = new AttributeCounter(
 EXTLibraryPackage.Literals.BOOK__TITLE);

System.out.println(
 "Number of accesses to the 'Book::title' attribute: " + query.accept(visitor));

where the visitor is defined thus:

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/utilities/Visitor.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/utilities/AbstractVisitor.html

Tutorials

Eclipse OCL 2020-06 (6.12.0) 148

class AttributeCounter extends AbstractVisitor<Integer,
 EClassifier, EOperation, EStructuralFeature, EEnumLiteral,
 EParameter, EObject, EObject, EObject, Constraint> {
 private final EAttribute attribute;

 AttributeCounter(EAttribute attribute) {
 super(0); // initialize the result of the AST visitiation to zero
 this.attribute = attribute;
 }

 protected Integer handlePropertyCallExp(PropertyCallExp<EClassifier, EStructuralFeature> callExp,
 Integer sourceResult, List<Integer> sourceResults) {
 if (callExp.getReferredProperty() == attribute) {
 // count one
 result++;
 }

 return result;
 }
}

4.7.8. Serialization
Because the OCL expression AST is a graph of EMF objects, we can serialize it to an XMI file and
deserialize it again later. To save our example expression, we start over by initializing our OCL instance
with a resource in which it will persist the environment and in which we will persist the parsed expression.
The key is in the persistence of the environment: OCL defines a variety of classes on the fly by template
instantiation. These include collection types, tuple types, and message types. Other elements needing to
be persisted are additional operations and attributes that may be defined in the local environment.

// create a resource in which to store our parsed OCL expressions and constraints
Resource res = resourceSet.createResource(
 URI.createPlatformResourceURI("/MyProject/myOcl.xmi", true);

// initialize a new OCL environment, persisted in this resource
ocl = OCL.newInstance(EcoreEnvironmentFactory.INSTANCE, res);

// for the new OCL environment, create a new helper
helper = OCL.createOCLHelper();

helper.setContext(EXTLibraryPackage.Literals.BOOK);

// try a very simple expression
OCLExpression<EClassifier> query = helper.createQuery("self.title");

// store our query in this resource. All of its necessary environment has
// already been stored, so we insert the query as the first resource root
res.getContents().add(0, query);

res.save(Collections.emptyMap());
res.unload();

To load a saved OCL expression is just as easy:

Resource res = resourceSet.getResource(
 URI.createPlatformResourceURI("/MyProject/myOcl.xmi", true),
 true;

@SuppressWarnings("unchecked")
OCLExpression<EClassifier> query = (OCLExpression<EClassifier>) res.getContents().get(0);

System.out.println(ocl.evaluate(myBook, query));

In the snippet above, we used the OCL's convenience method for a one-shot evaluation of a query. Looking
at the contents of the XMI document that we saved, we see that the self variable declaration is not

Tutorials

Eclipse OCL 2020-06 (6.12.0) 149

owned by the query expression, but is, rather, free-standing. The ExpressionInOCL metaclass solves
this problem by providing properties that contain context variable declarations, including self and (in
the context of operations) operation parameters.

<?xml version="1.0" encoding="ASCII"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" xmlns:ocl.ecore="http://www.eclipse.org/ocl/1.1.0/Ecore">
 <ocl.ecore:PropertyCallExp xmi:id="_897fVPfmEduCQ48h829a5g">
 <eType xsi:type="ocl.ecore:PrimitiveType" href="http://www.eclipse.org/ocl/1.1.0/oclstdlib.ecore#/0/String"/>
 <source xsi:type="ocl.ecore:VariableExp" xmi:id="_897fVvfmEduCQ48h829a5g" name="self" referredVariable="_897fUvfmEduCQ48h829a5g">
 <eType xsi:type="ecore:EClass" href="http:///org/eclipse/emf/examples/library/extlibrary.ecore/1.0.0#//Book"/>
 </source>
 <referredProperty xsi:type="ecore:EAttribute" href="http:///org/eclipse/emf/examples/library/extlibrary.ecore/1.0.0#//Book/title"/>
 </ocl.ecore:PropertyCallExp>
 <ocl.ecore:Variable xmi:id="_897fUvfmEduCQ48h829a5g" name="self">
 <eType xsi:type="ecore:EClass" href="http:///org/eclipse/emf/examples/library/extlibrary.ecore/1.0.0#//Book"/>
 </ocl.ecore:Variable>
</xmi:XMI>

4.7.9. Summary
To illustrate how to work with the OCL API, we

• Parsed and validated OCL expressions and constraints.

• Evaluated OCL query expressions and constraints.

• Obtained content-assist suggestions for the completion of OCL expressions.

• Transformed an OCL expression AST using the Visitor pattern.

• Saved and loaded OCL expressions to/from XMI resources.

4.8. Extensions (in the Unified/Pivot OCL prototype)
This section highlights some of the OCL extensions prototyped by the Pivot OCL.

4.8.1. Models
The Abstract Syntax classes and interfaces are autogenerated from Pivot.ecore using standard EMF
tooling. Pivot.ecore is auto-generated by custom QVTo transformations from OMG’s UML.xmi and
prototype OCL.uml models. This gives some degree of UML alignment.

The Standard Library is defined by OCL-2.5.oclstdlib for which an OCLstdlib Xtext editor is available.
The library is therefore modelled.

The Concrete Syntax classes and editors are also autogenerated from Ecore modesl using standard EMF
tooling. Autogeneation of the Ecore models from UML modesl is still work in progress.

The grammars are defined by Xtext models.

The run-time Value classes and interfaces are partially generated from Values.ecore. Full auto-generation
is still work in progress.

There is also a model of the code generation intermediate.

4.8.2. XMI
The abstract syntax models are fully persistable as standard XMI using the *.oclas file extension.
Pivot.oclas and OCL-2.5.oclas models form part of the Eclipse OCL distribution.

The problem of interchange of synthetic types such as Sequence(String) is solved by an orphan package
in which a singleton copy of every singleton is maintained.

The problem of Complete OCL’s open classes allowing additional features is solved by CompleteModel/
CompletePackage/CompleteClass additions to the abstract syntax so that a CompleteClass may aggregate
many ordinary Classes; one from the primary user (UML/Ecore) model, any number of further (Compete
OCL or OCLstdlib) over;ays.

The problem of references to unnavigable opposites is solved by an OppositePropertyCallExp class.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 150

The problem of references to modelled Iterations is resolved by adding a referredIteration property to
IterateExp/IteratorExp.

The problem of references to Stereotype properties is resolved by normalizing the UML representation
to exploit regular Class/Property usage.

The problem of references to Association properties is resolved by normalizing the UML representation
to exploit regular Class/Property usage.

4.8.3. Templates
In OMG OCL, types such as Sequence(String) magically associate String and an ill-defined concept of T.
In UML and consequently the UML-aligned pivot OCL, String is a TemplateParameter for which further
classes such as TemplateParameterSubstitution define bindings. The use of magic T for library classes is
genertalized to arbitrary user classes and operations; jusr like UML. Template types of cource conform
and since in OCL all values are immutable a Set(Integer) is conformat to a Sert(Real) and a Set(OclAny).
This can bew slightly surprising since typos may not lead immediately to type errors, rather an expression
with inferred OclAny errors. Use the hovertext to inspect your expression types.

4.8.4. Extensibility
The Pivot OCL is extended by the Eclipse QVTd project to support QVTc and QVTr. The models
are therefore extensible, but not readily so. Rather too mauch Java programming is required. True
extensibilitty and in partocular a modular OCL Standrad Library is still work in progress.

4.8.5. Operation Overloading
The buck passing between UML and OCL in regards to operation overloading is resolved in the Pivot
OCL by implementing a Java-style dynamic dispatch to the most derived implmentation with a matching
signature.

4.8.6. Stereotypes
The UML specification hinyts in regards to base_XXX and extension_XXX properties are followed
through in conjunction with an ElementExtension lass to model the instance of a Stereotype. Typesafe
stereotype navigation is therefore possible without resorting to the proprietary getXXX Java API of
Eclipse UML2.

4.8.7. Safe Navigation
The UML [1] and [?] multiplicities are exploited to distinguish nullable and non-null objects and
diagnose unsafe navigations. To make this useful an extension to null-free collections is possible by
defing e.g Set(String[*|1]) as a Set of String with unbounded [*] collection multiplity and never-null
[1] element multiplicity. The additional ?. and “?->” safe navigation operators avoid nullhazards. See
Safe Navigation in OCL for more details.

4.8.8. Reflection
In the Pivot OCL the oclType() libary method has a pivot::Class return type allowing further navigation
to make reflective access to the user metamodel.

4.8.9. Lambda Expressions
OCL has always had hidden lambda expressions in order to define iteratpr bodies. The Pivot OCL reifies
these so that the Standard Library uses a templated LambdaType as part of its modelling. Variables and
Parameters may use LamabdaType and so ooffer full lambda expression capability.

4.8.10. Map(K,V)
The Map type provides a familiar functionality comprising a set of keys with associated values.

Like all other OCL types, the Map type is immutable; there are therefore no put or set operations, rather
a new Map may be created by including a key-value pair tigether with an old Map.

http://www.eclipse.org/modeling/mdt/ocl/docs/publications/OCL2015SafeNavigation/SafeNavigation.pdf

Tutorials

Eclipse OCL 2020-06 (6.12.0) 151

The content of a Map may be accessed using at, which returns invalid for an unknown key in the same
way as an ordered collection returns invalid for an unknown index.

A Map may be created explicitly using the new Map Literal Syntax. Thus Map(Integer,String){1 <-
‘one’,2 <- ‘two’} creates a Map of Integer to String with 'one' bound to 1 and 'two' bound to 2. The
type (Integer,String) parameterisation can be omitted. null but not invalid values are permitted as keys
and values.

The new collectBy iteration may be used to construct a map from a collection or map. The iterators of the
collectBy define the keys and the value of the body of defines the values. For instance Sequence{1..10}-
>collectBy(i | i+i)} builds a map from the values 1 to 10 to the even values 2 to 20.

Most standard collection iteration operations are available for Maps using the map keys as the
(primary) iterator. A secondary value iterator may be specified using the new binds-to syntax. Thus
Map{1<-1,2<-4,3<-9}->reject(k<-v | k = 2 or v = 9} defines a reject iteration over the three entry map,
with a primary iterator k over the set of keys and a secondary co-iterator v over the values bound to each
key. The body causes the second entry with key 2, and the third entry with value 9 to be rejected leaving
just a one entry map.

4.8.10.1. Details
The OCL metamodel is extended by a MapLiteralExp and MapType. A new abstract IterableType
captures the iterable commonality of CollectionType and MapType without making map a collection.

The OCL standard library defines the new Map operations and the new Collection::collectBy itetation.

The OCL syntax is extended by the MapLiteralExp syntax and the binds-to co-iterator syntax for all
iterators.

The OCL run-time is extended by a MapValue and an abstract IteravleValue to capture the commonality
with CollectionValue.

4.9. Installing the Eclipse OCL Examples and Editors
These instructions have been updated for Eclipse Mars; Eclipse 4.5, EMF 2.11, OCL 6.0.

• Some screenshots may be slightly out of date.

The OCL User Interface (console, editors, debugger and validity view) is not part of the core OCL
functionality included in the Eclipse Modeling Tools Package, so although you may have OCL installed
and be able to read this tutorial via the Help->Help Contents->OCL Documentation, you may not have
the OCL examples installed.

An easy way to test whether you have the OCL Examples installed is to right click on a *.ecore file and
see whether OCLinEcore Editor appears in the Open With submenu.

If OCL is not installed at all, or if just the examples are not installed, the following installation step will
automatically install the OCL Examples and all required projects such as EMF, UML2, MWE2, Xpand
and Xtext.

Left-click on Help in the Eclipse menu-bar then left-click on Install New Software... and select the Luna
– http://download.eclipse.org/releases/luna update site from the pull-down menu to Work with and be
patient while the available updates are identified. Then type OCL in the filter text, click on the expand
item preceding the Modeling category and then check OCL Examples and Editors SDK.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 152

Select Next.

Select Next again and read the license agreement. Set to accept it.

Tutorials

Eclipse OCL 2020-06 (6.12.0) 153

Select Finish and be patient while the software is downloaded and installed. Select Restart Now when
prompted to do so.

4.9.1. Troubleshooting
Eclipse Modeling Projects have a large number of classes and so require a large amount of PermGen
space on a Sun JVM. If you are using default Eclipse startup settings you are liable to encounter
OutOfMemoryExceptions. Therefore follow the advice in How do I start Eclipse and set XX:PermSize to
at least 64M, either on your Eclipse command line, or your Eclipse shortcut or in the eclipse.ini adjacent
to eclipse.exe. If you are using a 64 bit machine or plan to use graphical modeling tools such as Papyrus
or Sirius, 128M is almost certainly necessary.

http://wiki.eclipse.org/IRC_FAQ#How_do_I_start_Eclipse.3F

Eclipse OCL 2020-06 (6.12.0) 154

Chapter 5. Examples
5.1. Royal and Loyal Example Project

The RoyalAndLoyal example project provides a substantial example of a Complete OCL document
complementing an independent Ecore meta-model.

This is the standard example used in many OCL texts and courses. It was first produced as part of the
The Object Constraint Language Second Edition by Jos Warmer and Anneke Kleppe.

This example may be used to explore a wide variety of OCL syntaxes and their presentation in the
Complete OCL editor.

You may install the example by selecting Example... from the New menu, then selecting Royal and
Loyal Example under the OCL (Object Constraint Language) plugins.

Open RoyalAndLoyal.ecore with the OCLinEcore editor to explore the Ecore metamodel. Note how
the Outline can be alphabeticized and so provide a useful overview. The outline very similar to the
conventional Sample Ecore Editor tree view.

Open RoyalAndLoyal.ocl with the CompleteOCL editor to explore the OCL. Note how the full AST
can be explored in the Outline.

5.2. Empty Example Project
The Empty example project creates an empty project with a Java class path set up to assist in the use
of OCL.

This assistance is not really necessary now that the editors are based on Xtext and now that an XMI
representation is not automatically saved in a bin directory.

The OCL editors can be used wherever Ecore editors can be used.

It is not necessary for a project to have a Java nature.

It is not necessary for a project to have an Xtext nature. If you add an Xtext nature, your OCL files will
be built automatically when other files in the project or its dependencies change. This can significantly
clutter the Problems View if you have problems with your OCL, and may significantly increase build
times.

5.3. OCLinEcore Tutorial Example Project
The OCLinEcore Tutorial project provides the conclusion of the OCLinEcore Tutorial and the material
for the Getting Started quick introduction.

The project provides an example of OCL embedded in Ecore that is also used by the Code Generation
Tutorial and Debugger tutorial.

5.4. Complete OCL Tutorial Example Project
The Complete OCL Tutorial project provides examples for the the Complete OCL Tutorial.

The project provides examples Complete OCL documents that complement Ecore, UML, Xtext and XMI.

5.5. OCL Interpreter Example

5.5.1. Introduction
This example illustrates the usage of the generic OCL Parser API to parse and evaluate OCL query
expressions and constraints within the SDK. It demonstrates how to author OCL expressions and evaluate
them against elements of library model instances, or against Ecore and UML elements. For Ecore and
UML models, a further option of parsing (not evaluating) model-level (M1 in the OMG modeling stack)
constraints is available.

OCLinEcoreTutorial
GettingStarted
CompleteOCLTutorial

Examples

Eclipse OCL 2020-06 (6.12.0) 155

5.5.2. References
Please refer to the document Object Constraint Language Examples Overview for reviewing the library
meta-model used as the basis for demonstrating the capabilities in this example.

5.5.3. Description
This example plug-in is named org.eclipse.emf.ocl.examples.interpreter. This plug-
in contributes the OCL Interpreter menu to the library editor’s main menu and context menu. The
menu has one item:

• Show Console: Opens the interactive OCL console.

Please refer to the tutorial OCL Interpreter Tutorial for reviewing the code samples within this example.

The bottom field in the console accepts OCL expressions (comments supported). You can press Enter to
evaluate on the currently selected element. You can press Ctrl+Enter or Shift+Enter to insert a newline.
The top field shows the output and errors. The console can be cleared by the Eraser button and closed
by the X button.

Because the EXTLibrary model is based on the Ecore metamodel, ensure that the Ecore metamodel
is selected in the console’s tool bar. Also ensure that the M2 modeling level is selected, as EXTLibrary
is not a metamodel, so instances of it are not models. Thus, the OCL expressions that we create will target
the Ecore meta-model, as the model of the EXTLibrary model.

Content-assist is automatically activated on typing any of " .", " ->", " ::", and " ^". Also, Ctrl
+Space can be used to invoke content-assist at any time.

ExamplesOverview

Examples

Eclipse OCL 2020-06 (6.12.0) 156

5.5.4. Support for Ecore and UML Models
The OCL Console contributes an OCL->Show OCL Console menu action to the Ecore and UML editors
(for *.ecore and *.uml models). These actions automatically select the appropriate metamodel in
the console.

For both Ecore and UML, parsing constraints at the M1 (model) level is supported. This implements a
scratch pad for developing OCL constraints in the context of:

• classifiers, for invariant constraints

• operations, for pre/post condition constraints and body expressions

• attributes, for initial-value and derivation constraints

The console infers the kind of constraint from the selected element; in the case of an operation, it assumes
a post-condition constraint as these constraints support a superset of the syntax for pre-conditions and
body expressions.

The figure above shows the parsing of a derivation constraint on an Ecore property (an
EStructuralFeature).

Examples

Eclipse OCL 2020-06 (6.12.0) 157

The figure above shows the parsing of an invariant constraint on a UML classifier (a Class). Note that
UML can model the Job as an association class; a roughly equivalent Ecore model is more verbose.

5.5.5. Example Code
Refer to the code in this example if you need to:

• parse, validate and evaluate OCL queries and constraints on EMF model elements

• implement content-assist for OCL constraints in your model editor

Copyright © 2000, 2007 IBM Corporation and others. All Rights Reserved.

http://www.eclipse.org/legal/epl-v20.html

Eclipse OCL 2020-06 (6.12.0) 158

Chapter 6. Classic Ecore/UML
Programmers Guide

The Ecore/UML Programmers Guide describes the ways in which the Ecore or UML bindings of Eclipse
OCL can be used from Java programs.

The Ecore binding has been available since Eclipse OCL 1.0.0 (Callisto). The UML binding was added
in 1.1.0 (Europa). Both will remain for as long as necessary. Examples quality prototypes of the new
UML-aligned Pivot binding were first available in 3.1.0 (Indigo). The Pivot binding became the preferred
binding in 6.0.0 (Mars). The Pivot binding is described in a separate Pivot Programmers Guide.

The OCL Parser/Interpreter provides an implementation of the Object Constraint Language 2.4
specification for EMF-based metamodels and models. It offers OCL constraint and query parsing and
evaluation, model-based validation, and provides an infrastructure for content assist in textual editors.

The following features are supported in the current version:

• Classifier invariant constraints

• Operation precondition and postcondition constraints and body conditions

• Property constraints (initial-value and derivation)

• Attribute and operation definitions (def: expressions)

• Package context declaration

• Basic values and types

• Collection types

• Navigation of attributes and association ends

• Operation invocation

• Iteration expressions (all standard iterators)

• Let expressions

• If expressions

• Tuples

• Message expressions, including unspecified values

• Operations predefined by OCL: allInstances(), oclIsKindOf(), oclIsTypeOf(), oclAsType(),
oclIsNew()

• Escape syntax for illegal names: type, operation, attribute, etc. names that correspond to OCL reserved
words can be escaped in the standard fashion using a leading underscore (‘_’). In addition, names that
contain spaces or tabs can be escaped by enclosing them in double-quotes (‘"’; this is non-standard).
e.g., self.ownedRule->forAll(c : Constraint | c._context = self)

The above constructs are supported by the parser for parsing and for evaluation, with the exception of the
oclIsNew() operation and message expressions. All of the above are supported for both Ecore and UML
models. The following are supported by default for UML (both in parsing and evaluation):

• Navigation of non-navigable association ends (including those that are owned by the association)

• Qualified association end navigation

• Navigation to association classes, including source qualifiers

• Operations predefined by OCL: oclIsInState()

The following features are provided in addition to the OCL specification:

• String case conversion operations: toUpper(), toLower()

• Support for comparison (<, <=, etc.) and sorting of any java Comparable s of conformant types

• Transitive closure of associations: closure(expr : OCLExpression) iterator

• Navigation of “hidden” opposites of references specified in Ecore models using a
Property.oppositeRoleName annotation with source http://schema.omg.org/spec/

http://www.omg.org/spec/OCL

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 159

MOF/2.0/emof.xml on the forward reference, producing an OppositePropertyCallExp
expression

The OCL implementation is defined in plug-ins for convenient deployment in Eclipse, but as is the case
for EMF, it can also be used stand-alone. The plug-ins are partitioned thus:

• org.eclipse.ocl: the core parsing, evaluation, and content assist services. Definition of the OCL
Abstract Syntax Model and Environment API. These APIs are generic, independent of any particular
metamodel (though using Ecore/EMF as the meta-meta-model).

• org.eclipse.ocl.ecore: implementation of the Ecore metamodel environment, binding the
generic Environment and AST APIs to the Ecore language. Provides support for working with OCL
constraints and queries targeting Ecore models.

• org.eclipse.ocl.uml: implementation of the UML metamodel environment, binding the
generic Environment and AST APIs to the UML language. Provides support for working with OCL
targeting UML models.

Please refer to the OCL Interpreter Tutorial for review of the code samples.

6.1. Parsing Constraints and Queries
The OCL parser provides two APIs for parsing constraint and query expressions. The OCLHelper
interface is designed primarily for parsing constraints and query expressions embedded in models, such
as Ecore or UML models. The OCL class serves as the main entrypoint into the parsing API but also
implements the parsing of OCL documents, for example from text files. In both cases, the concept of
Environment is crucial.

6.1.1. The OCL Environment
The following diagram shows the core of the Environment API, that clients of the OCL parser interact
with:

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/helper/OCLHelper.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/OCL.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 160

The OCL class is a generic type; its type parameters represent the various metaclasses of the metamodels
that OCL works with in the UML/MOF family of OMG specifications. For example, <C> represents the
Classifier concept, <O> the Operation concept, etc. See the discussion of metamodels supported by OCL
for details of the mappings. The same type parameter names are used consistently throughout the OCL
APIs to represent the same metaclasses.

The OCL class defines instances of autonomous OCL parsing and evaluation environments. It has a single
root Environment created by an EnvironmentFactory implementation for a particular EMF-
based metamodel. The OCL environment consists, conceptually, of the model that is to be constrained
together with all of the constraints and additional operations and attributes defined (via OCL) for the
purpose of formulating constraints.

Environment s nest. Usually the root environment has no correlation to an element in the model,
or it may correspond to some Package providing a default namespace (called a package context).

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/OCL.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/Environment.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/EnvironmentFactory.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 161

Alternatively, it may contain one or more nested environments defining package namespaces. A package
context contains one or more classifier contexts, which in turn can contain operation and/or attribute
contexts. Whereas the purpose of a package context is primarily to assist in the look-up of named model
elements, the classifier, operation, and attribute contexts have deeper meaning.

A classifier context defines the type of the self variable in OCL constraints and queries. By itself, it
is the context for invariant constraints for the context classifier. Additionally, as the parent context for
operation and attribute constraints, it indicates the classifier in which context an operation or attribute
constraint applies; this may be the classifier that defines these features, or it may inherit them from some
more general classifier.

An Environment may contain named Variable s to which OCL expressions can refer. The most
common of these is self. Others include the parameters defined by an operation (and its result), in
the case of an operation context. The OCL API even allows clients to add variables, in code, to define
“global” names.

6.1.2. Creating an OCL Environment
The static factory methods on the OCL class are used to create instances. It is a good practice to re-use
the same OCL instance for all parsing and evaluation of constraints and queries on a model while that
model is loaded (usually in some ResourceSet in an editor). Using the shared environment factory
for the Ecore metamodel, we can create an OCL environment suitable for parsing OCL constraints on
any Ecore model and evaluating them on instances of the model:

[Text for cut and paste]

Several of the type parameters in the OCL generic type signature are useful mostly within the OCL API.
We leave them, here, as wildcards.

6.1.3. The OCL Helper
From an OCL instance, we can create a helper object with which to parse constraints and additional
operation/attribute definitions. This OCLHelper stores all of the instantiations of OCL template
metaclasses (such as CollectionType(T) and TupleType and additional operation/attribute
definitions in the root environment of the OCL that created it. This ensures that all of these constructs are
available for reuse in subsequent parsing.

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/expressions/Variable.html
../references/5110-creating.txt
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/helper/OCLHelper.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/types/CollectionType.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/types/TupleType.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 162

The OCLHelper is primarily designed for parsing constraints and query expressions embedded in
models, providing the following API for that purpose:

• createQuery(): parses a query expression

• createConstraint(): parses a constraint of a given ConstraintKind

• createInvariant(): convenience for invariant constraints

• createPrecondition(): convenience for pre-condition constraints

• createPostcondition(): convenience for post-condition constraints

• createBodyCondition(): convenience for body conditions

• createInitialValueExpression(): convenience for attribute initial values

• createDerivedValueExpression(): convenience for attribute derived values

• defineOperation(): convenience for additional operation definitions

• defineAttribute(): convenience for additional attribute definitions

Different kinds of constraints require different context environments. The setContext(),
setOperationContext(), and setAttributeContext() methods create the appropriate
nested Environment@s in the host @OCL instance’s root environment.

The result of parsing a query expression is an OCLExpression , an instance of the Abstract Syntax
Model . The result of parsing a constraint is an instance of the Constraint metaclass defined by the
OCL's target metamodel .

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/expressions/OCLExpression.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 163

[Text for cut and paste]

Ecore does not define a Constraint metaclass, so the OCL binding for Ecore supplies one.

6.1.4. Operation and Attribute Contexts
In the case of constraints on operations or attributes, the context consists of two elements:
the constrained operation/attribute and a classifier in the context of which the constraint is to
apply. This accounts for the possibility that a classifier defines constraints on inherited features.
As an example, consider the EModelElement::getEAnnotation(EString) operation and
EReference::eReferenceType property in the Ecore metamodel. These can be constrained as
follows:

[Text for cut and paste]

6.2. Evaluating Constraints and Queries
In Parsing Constraints, we saw how to use the OCLHelper API for parsing OCL constraints and query
expressions. Parsing constraints is very interesting in itself, but we can also make OCL come alive in our
applications by evaluating these constraints. For this, OCL provides a Query API.

6.2.1. The OCL Query
Like the OCLHelper for parsing constraints, the OCL facade object provides Query objects for
evaluating constraints and query expressions.

../references/5110-context.txt
../references/5110-define.txt
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/Query.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 164

The Query encapsulates an EvaluationEnvironment providing the run-time values of context
variables to the OCL interpreter. These context variables are set and retrieved using the following
methods:

• add(String, Object): adds a name-value binding for a variable

• replace(String, Object): replaces an existing variable binding

• remove(): removes a variable binding

• getValueOf(String): obtains a variable value

The context variables of primary interest are self and, in operation constraints, the variables
corresponding to its parameters. The EvaluationEnvironment API is also used to supply values
for “global” variables added to the parsing Environment by the client.

Another important consideration in the evaluation environment is the allInstances() operation,
which obtains the entire extent of a classifier. For data types, this is a simple problem: the extent
of an Enumeration is well defined and the extents of other kinds of DataType s are undefined.
For Class extents, the EvaluationEnvironment provides support for an extent map, mapping
classes to the sets of their instances, as determined by the client. A client sets the extent map using the
OCL.setExtentMap() method. The default extent map, if none is provided by the client, lazily
computes the extent of a class from the EMF Resource containing the context element of the evaluation.
An alternative extent map can be found in org.eclipse.ocl.ecore.opposites.ExtentMap
.

So, after optionally setting values of context variables (other than self; the Query takes care of this)
and an extent map, simply construct a query and use it to evaluate the expression or check the constraint:

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/EvaluationEnvironment.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/OCL.html#setExtentMap(java.util.Map)
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/ecore/opposites/ExtentMap.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 165

[Text for cut and paste]

One of the advantages of the Query API is that a query’s evaluation environment can be reused for
multiple evaluations, as above. The extent of any classifier is only computed once. For convenience,
however, in situations where only a single evaluation is required, the OCL class provides shortcuts:

[Text for cut and paste]

The Query API also provides methods that work on multiple elements. The first example, above, could
be written more succinctly as:

[Text for cut and paste]

6.3. Parsing OCL Documents
As we saw in the Parsing Constraints and Queries topic, the OCL parser provides an OCLHelper
API for parsing constraints embedded in models. OCL also permits constraints to be specified in a text
document, as an adjunct to the model. In this case, the concrete syntax for context declarations indicates
the context of constraints, equivalent to their placement in models.

As an example, consider the following Complete OCL document: "

../references/5115-check-all.txt
../references/5115-check-one.txt
../references/5115-check-quick.txt
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/helper/OCLHelper.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 166

[Text for cut and paste]

The import on the first line is an extension supported by the Complete OCL editor
for use with the Pivot meta-model. The import is ignored by the parsers for the Ecore
or UML bindings, which assume that the relevant metamodels have been registered
in either the global EPackage.Registry or the local EPackage.Registry passed to the
EnvironmentFactory..

6.3.1. The OCL Input
The OCLInput class encapsulates an OCL document. An input can be created from a string or an
input stream.

Given an OCLInput, simply ask an OCL to parse it: "

../references/5120-extlibrary.ocl
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/OCLInput.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 167

[Text for cut and paste]

6.3.2. Accessing the Constraints
The OCL returns the list of constraints if they were successfully parsed. They are retained by the
OCL (available via the getConstraints() method at any time), and in particular, any definitions
of additional operations or attributes are available for subsequent constraint parsing. Any number of
OCL documents may be parsed by the same OCL instance, combined also with constraints parsed by
OCLHelpers. All of these constraints are retained by the OCL environment.

[Text for cut and paste]

The source for these examples may be found in the org.eclipse.ocl.ecore.tests plugin in model/
parsingDocumentsExample.ocl and in src/org/eclipse/ocl/ecore/tests/DocumentationExamples.java.

6.4. OCL Relationship to Metamodels
The OCL implementation provides support for models defined using either the Ecore or the UML
metamodel (as implemented by the Eclipse EMF and UML2 projects), and an extensibility API that
allows additional EMF-based metamodels to be plugged in.

The direct and indirect coupling of the Ecore and UML2 meta-models to Ecore makes
exact compliance with the OMG specification very difficult, particularly in the area
of reflection. Eclipse OCL is therefore migrating to a new potentially 100% OMG
compliant Pivot metamodel that hides the differencess between OMG’s UML and

../references/5120-parsing.txt
../references/5120-accessing.txt

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 168

EMOF and Eclipse’s UML and Ecore. The Pivot binding is described in the Pivot
Programmers Guide.

The OCL API implements support for different target metamodels via the EnvironmentFactory
interface. An implementation of this interface binds the metamodel’s metaclasses to the generic type
parameters of the OCL class. The metamodel-specific Environment implementation constructed by
this factory implements the reflection capability required by OCL to discover the elements of the model
being constrained and the relationships between them.

6.4.1. The Ecore Metamodel Binding
An OCL binding for the Ecore metamodel is provided by the org.eclipse.ocl.ecore plug-in. It
is best suited to parsing and evaluating OCL constraints on Ecore models. Evaluation of constraints is
supported on instances of the EMF-generated Java API (Ecore as the source for the genmodel) and on
dynamic EObjects.

As is illustrated by most of the examples in this documentation, the Ecore binding is provided by the
EcoreEnvironmentFactory class. By default, the Ecore environment uses the static EPackage
registry to look up package names. It can also be supplied with an alternative package registry (for
example, one local to a ResourceSet) but it will always use the static registry as a backup. Aside from
the package registry, the Ecore environment factory maintains no state. So, when the shared registry is
to be used, the static EcoreEnvironmentFactory.INSTANCE is most practical.

The Ecore binding for OCL provides the following capabilities, reflecting the subset of Ecore’s modeling
constructs with respect to UML:

Capability Parse Evaluate

Classifier invariant constraints Y Y

Operation precondition and
postcondition constraints and
body conditions

Y N

Property constraints (initial-value
and derivation)

Y Y*

Attribute and operation
definitions (def: expressions)

Y Y

Package context declaration Y n/a

Basic values and types, mapped
from the standard EDataTypes to
OCL’s primitive types

Y Y

Collection types Y Y

Navigation of attributes and
references

Y Y

Operation invocation Y Y

Iteration expressions (all standard
iterators)

Y Y

Let expressions Y Y

If expressions Y Y

Tuples Y Y

Message expressions, including
unspecified values

Y N

Operations predefined by OCL:
allInstances()

Y Y

Operations predefined by OCL:
oclIsKindOf(), oclIsTypeOf(),
oclAsType()

Y Y

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/EnvironmentFactory.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/OCL.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/Environment.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/ecore/EcoreEnvironmentFactory.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 169

Operations predefined by OCL:
oclIsNew()

Y N

@pre expressions Y N

* derivation only

Ecore metamodel capability matrix

Because Ecore does not define analogues of some of the UML metaclasses required by the OCL
Abstract Syntax Model, the Ecore binding defines these on its behalf, in the platform:/plugin/
org.eclipse.ocl.ecore/model/OCLEcore.ecore metamodel. These include:

• Constraint: the model of an OCL constraint (when the language is OCL)

• CallOperationAction: used in the model of message expressions

• SendSignalAction: used in the model of message expressions

• ExpressionInOCL: it is this metaclass’s general class OpaqueExpression that Ecore does not
define. It is elided in the Ecore binding

• State: Ecore provides no behavior modeling capabilities. The Ecore binding simply substitutes
EObject

For applications that work exclusively with the Ecore binding for OCL, the
org.eclipse.ocl.ecore package defines a subclass of the OCL class that supplies all of the generic
type parameter bindings to simplify typing (in the absence of type aliasing in Java). It also provides
Ecore-specific convenience factory methods for the OCL, itself, and narrows the return type of the factory
methods for the OCLHelper and Query interfaces. These specialized interfaces likewise supply the
generic type parameter bindings for Ecore.

6.4.2. The UML Metamodel Binding
An OCL binding for the UML metamodel is provided by the org.eclipse.ocl.uml plug-in. It
is best suited to parsing and evaluating OCL constraints on UML models. Evaluation of constraints
is supported on instances of the UML2-generated Java API (UML as the source for the genmodel),
on dynamic EObjects (using an Ecore model created by the UML-to-Ecore converter), and on
InstanceSpecification elements in the UML model.

The UML binding is provided by the UMLEnvironmentFactory class. By default, the UML
environment factory and all of the environment contexts that it creates use a private ResourceSet to
look up the corresponding UML model(s) against which OCL constraints are parsed.

• It is the client’s responsibility to ensure that the UML model is loaded in the resource set used by the
UML environment factory instance.

The UML environment factory can alternatively be initialized with a resource set of the client’s choosing.
Ordinarily, the UML environment uses its resource set’s local EPackage registry to look up EMF-
generated EPackage names corresponding to UML models. A custom package registry may be provided
by the client if necessary.

The UML binding for OCL provides the following capabilities:

Capability Parse Evaluate

Classifier invariant constraints Y Y

Operation precondition and
postcondition constraints and
body conditions

Y N

Property constraints (initial-value
and derivation)

Y Y*

Attribute and operation
definitions (def: expressions)

Y Y

Package context declaration Y n/a

Basic values and types Y Y+

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/uml/UMLEnvironmentFactory.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 170

Collection types Y Y

Operation invocation Y Y-

Navigation of attributes and
references

Y Y

Navigation of non-navigable
association ends (including those
that are owned by the association)

Y Y

Qualified association end
navigation

Y Y=

Navigation to association classes,
including source qualifiers

Y Y=

Iteration expressions (all standard
iterators)

Y Y

Let expressions Y Y

If expressions Y Y

Tuples Y Y

Message expressions, including
unspecified values

Y N

Operations predefined by OCL:
allInstances()

Y Y

Operations predefined by OCL:
oclIsKindOf(), oclIsTypeOf(),
oclAsType()

Y Y

Operations predefined by OCL:
oclIsInState()

Y N

Operations predefined by OCL:
oclIsNew()

Y N

@pre expressions Y N

* derivation only

+ OCL defines the Real primitive
type that is missing from UML,
but not a LiteralReal

- with InstanceSpecifications,
only where body constraints are
defined

= only with
InstanceSpecifications

UML metamodel capability matrix

A special case of the UML environment’s support for dynamic EObjects, mentioned above, is stereotype
applications. The Eclipse UML2 component uses dynamic EMF in the implementation of stereotype
applications, by converting UML Profile s to EPackage s. Constraints parsed in the context of a
UML Stereotype can be evaluated on applications (instances) of that stereotype or on model elements
to which the stereotype is applied. This applies only to UML models, themselves, as instances of the
UML metamodel (stereotyping is only available in the UML metamodel).

For applications that work exclusively with the UML binding for OCL, the org.eclipse.ocl.uml
package defines a subclass of the OCL class that supplies all of the generic type parameter bindings to
simplify typing (in the absence of type aliasing in Java). It also provides UML-specific convenience
factory methods for the OCL, itself, and narrows the return type of the factory methods for the
OCLHelper and Query interfaces. These specialized interfaces likewise supply the generic type
parameter bindings for UML.

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 171

6.5. Content Assist Support
The Content Assist facilities described here are used by the Interactive OCL Console.
They are not used by the new Xtext-based Editors or the Interactive Xtext OCL
Console.

The OCLHelper API provides support for content-assist in rich editors, by parsing
partial OCL expressions and supplying completion suggestions. The List<Choice>
getSyntaxHelp(ConstraintKind, String) operation returns a list of suggestions for the next
token to follow the end of the expression fragment.

The Choice objects returned by the helper include some convenient text strings (name and description)
to formulate basic JFace content-assist proposals. Each choice also carries a reference to the element that
it represents, the kind of element indicated by the ChoiceKind enumeration, for a more sophisticated
content assist that might inlude context information, documentation, etc. as in Eclipse JDT. The list of
choices depends in part on the kind of constraint expression that is to be completed, as for example, the
oclIsNew() operation is only permitted in operation post-conditions.

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/helper/OCLHelper.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/helper/Choice.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 172

helper.setContext(EXTLibraryPackage.Literals.BOOK);

List<Choice> choices = helper.getSyntaxHelp(ConstraintKind.INVARIANT,
 "Book.allInstances()->collect(author)->");

for (Choice next : choices) {
 switch (next.getKind()) {
 case OPERATION:
 case SIGNAL:
 // the description is already complete
 System.out.println(next.getDescription());
 case PROPERTY:
 case ENUMERATION_LITERAL:
 case VARIABLE:
 System.out.println(next.getName() + " : " + next.getDescription();
 break;
 default:
 System.out.println(next.getName());
 break;
 }
}

6.5.1. Syntax Completion Choices
The computation of Choice s is supported for the following tokens, which may be used by a client as
auto-assist triggers:

Token Completion choices

. Features applicable to the type of the expression
to the left of the dot, or its element type if it
is a collection. association classes (in the UML
environment only)

-> Collection operations and iterators

:: Packages, types, enumeration literals, and states (in
the UML environment only)

^ Operations and signals (in the UML environment
only)

^^

In other situations, the choices the current context
variables and implicit references to features of
the self variable. For example, if the input is
something like "" or "self.isOrdered and
"

Content-assist triggers

The completion of partially specified identifiers is also supported, by backtracking to look for one of these
triggering tokens. This supports interactively narrowing the choices while the content-assist window is
active.

choices = helper.getSyntaxHelp(ConstraintKind.POSTCONDITION,
 "self.author.oclIs");

6.6. OCL Abstract Syntax Model
The OCL Abstract Syntax Model is defined by the OCL Language 2.4 specification . We will not attempt
to describe this model, here. However, the Eclipse implementation of OCL defines some extensions to
this model that provide additional services. The most important of these is support for the Visitor design
pattern.

http://www.omg.org/spec/OCL

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 173

6.6.1. The Visitable and Visitor Interfaces
All of the metaclasses in the Abstract Syntax Model (nodes in the AST) that can be visited implement the
Visitable interface. It define a single operation accept(Visitor). This method delegates to the
appropriate visitXyz(Xyz) method of the Visitor . The direct implementors of the Visitable
interface are the OCLExpression and those metaclasses of the Expressions package that do not
conform to OCLExpression:

• Variable

• CollectionLiteralPart

• TupleLiteralPart

• ExpressionInOCL

This last is not defined in the Expressions package because it pertains to the placement of OCL in
Constraint elements in models.

The OCL parser, internally, defines a few implementations of visitors, including a
ValidationVisitor for validating OCL expressions and an EvaluationVisitor for
evaluating OCL expressions.

6.6.2. Implementing a Visitor
The best way to implement a visitor is to extend the AbstractVisitor class. It provides a result
variable of the generic type parameter type T to store the result computed by the visitor (optional) and
a convenient pattern of selective method overrides to process only those nodes of interest for the task
at hand.

The AbstractVisitor provides implementations of all of the visitXyz() interface methods that
simply return the current result value. Furthermore, for any internal nodes of the syntax tree (such
as OperationCallExp and IfExp), the visitXyz() methods recursively visit the child nodes,
feeding the results of those descents into a handleXyz() method that the subclass can override to
compute some result from the child results.

Thus, a subclass needs only to selectively override the default implementations of visitXyz() methods
for leaf tree nodes and handleXyz() methods for non-leaves. For example, to find all variables that
are declared but never used:

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/utilities/Visitable.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/utilities/Visitor.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/EvaluationVisitor.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/utilities/AbstractVisitor.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 174

OCLExpression<Classifier> expr = getExpression(); // hypothetical source of an expression

Set<Variable<Classifier, Parameter>> variables = expr.accept(
 new AbstractVisitor<Set<Variable<Classifier, Parameter>>,
 Classifier, Operation, Property, EnumerationLiteral,
 Parameter, State, CallOperationAction, SendSignalAction, Constraint>(
 new HashSet<Variable<Classifier, Parameter>>()) { // initialize the result

 @Override
 protected Set<Variable<Classifier, Parameter>> handleVariable(
 Variable<Classifier, Parameter> variable,
 Set<Variable<Classifier, Parameter>> initResult) {

 result.add(variable);

 return result;
 }

 @Override
 public Set<Variable<Classifier, Parameter>> visitVariableExp(
 VariableExp<Classifier, Parameter> v) {

 result.remove(v.getReferredVariable());

 return result;
 }
 }});

Set<String> varNames = new HashSet<String>();
for (Variable<?, ?> next : variables) {
 varNames.add(next.getName());
}

System.out.println("Unused variables: + " varNames);

6.6.3. The OppositePropertyCallExp Extension
In Ecore models, a reference may have defined an opposite reference, usually owned by the class
that is the type of the forward reference. An opposite reference has several, often undesirable or even
prohibitive, implications on the class owning it:

• A getter and, for settable features with upper multiplicity 1, a setter will be added, requiring the class
to know the class owning the forward reference. This would create cyclic component references if the
two classes lived in different components and would therefore not be possible.

• The default serialization format and usually the storage format for non-default model stores changes
to include the opposite reference.

Yet, particularly for expressing constraints over the instance models it is often instrumental to be able
to navigate such forward references also in reverse. The OppositePropertyCallExp class which
inherits from NavigationCallExp and is sibling of PropertyCallExp allows for this reverse
navigation in OCL. It points to the forward reference, and its semantics are to navigate this reference
in reverse.

To allow for convenient creation of such expressions in the OCL concrete syntax, the standard
property call syntax, such as self.x can be used, where x is not the name of a forward
reference on self's class but rather an annotated name on a reference using self's class or any
of its base classes as its type. To enable this feature, use the special environment factory class
EcoreEnvironmentFactoryWithHiddenOpposites when initializing the OCL environment,
e.g., by passing such an object to the OCL.newInstance(...) method.

The name for the reverse navigation can be specified by an EAnnotation
with source http://schema.omg.org/spec/MOF/2.0/emof.xml and with details key
Property.oppositeRoleName. The details value contains the name by which the “hidden”
opposite can be referred to in OCL expressions.

http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/EAnnotation.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 175

If OCL delegates are to be used, the standard EPackage annotations with invocationDelegate,
settingDelegate and validationDelegate details for the http://www.eclipse.org/
emf/2002/Ecore source must be augmented as shown by a further hiddenOpposites detail for
the http://www.eclipse.org/emf/2002/Ecore/OCL source.

This additional annotation causes the EnvironmentFactory functionality for the EPackage
to be provided by an instance of the EcoreEnvironmentFactoryWithHiddenOpposites
class which uses the DefaultOppositeEndFinder class will be used for finding and
navigating the hidden opposites. More substantial customisation is possible by specifying
an environmentFactoryClass detail with the fully qualified name of a derived
EcoreEnvironmentFactory that provides a constructor taking an EPackage.Registry
argument. Note, that the class specified must be visible by your Ecore model’s bundle.

6.7. Customizing the Environment
An application that integrates OCL may find it advantageous to provide its users with an enhanced
OCL environment, to simplify their task of formulating OCL constraints and queries. For example,
an application might define additional “primitive” operations on the OCL standard data types that are
pertinent to its domain, or “global” variables that inject useful objects into the user’s context. It is also
possible to customize the way “hidden” opposites are looked up and navigated, specifically to allow
reverse navigation across Ecore references that have no opposite defined.

6.7.1. Defining Global Variables
Consider an application that allows end-users to specify conditions, using OCL, to filter the objects that
are shown in the user interface. Given a sufficiently rich model (expressed in Ecore or UML) of the
objects that the UI presents, many conditions can be expressed entirely in terms of this model. However,
some queries might depend on state of the application, itself, not the data: which perspective is active,
whether some view is showing, or even the time of day. These are not characteristics of the objects that
the user wishes to filter.

Such an application might, then, choose to define application-specific variables that a filter condition can
query: app$perspective, app$views, app$time. Or, perhaps a single variable app$, that has
properties that a condition can access:

-- filter out OCL files in the Web Development perspective
self.extension = 'ocl' and app$.perspective = 'Web Development'

To do this, we define a small Ecore model of our application context, e.g.:

Then, in the code that parses a user’s filter condition:

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 176

OCL<?, EClassifier, ?, ?, ?, ?, ?, ?, ?, Constraint, EClass, EObject> ocl;
ocl = OCL.newInstance(EcoreEnvironmentFactory.INSTANCE);

OCLHelper<EClassifier, ?, ?, Constraint> helper = ocl.createOCLHelper();
helper.setContext(MyPackage.Literals.FILE);

// create a variable declaring our global application context object
Variable<EClassifier, EParameter> appContextVar =
 ExpressionsFactory.eINSTANCE.createVariable();
appContextVar.setName("app$");
appContextVar.setType(AppPackage.Literals.APP_CONTEXT);

// add it to the global OCL environment
ocl.getEnvironment().addElement(appContextVar.getName(), appContextVar, true);

List<Constraint> conditions = new ArrayList<Constraint>();

// parse the user's filter conditions
for (String cond : getFilterConditions()) {
 conditions.add(helper.createInvariant(cond));
}

// apply the filters
applyFilters(conditions);

The body of our hypothetical applyFilters() method must bind this context variable to a value. In
this case, the value can be computed when we apply the filters:

AppContext appContext = AppFactory.eINSTANCE.createAppContext();

// hypothetical workbench utilities
appContext.setPerspective(WorkbenchUtil.getCurrentPerspective());
appContext.getViews().addAll(WorkbenchUtil.getOpenViewIDs());
appContext.setTime(new Date());

List<Query<EClassifier, EClass, EObject>> queries =
 new ArrayListlt;Query<EClassifier, EClass, EObject>>(constraints.size());

for (Constraint next : constraints) {
 Query<EClassifier, EClass, EObject> query = ocl.createQuery(next);

 // bind the variable value
 query.getEvaluationEnvironment().add("app$", appContext());

 queries.add(query);
}

filter(queries); // applies these filters to the current objects
 // by evaluating the OCLS on them.

6.7.2. Defining Helper Operations in Java
OCL allows the definition of additional operations and attributes using def: expressions. This is very
convenient for the formulation of constraints, but what if the operation that we need is something like
a regex pattern match?

class Person
inv valid_ssn: self.ssn.regexMatch('\d{3}-\d{3}-\d{3}') <> null

We might try to define this using OCL, as an additional operation on the OCL Standard Library’s String
primitive type:

class String
def: regexMatch(pattern : String) : String =
 -- ???

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 177

The operations available in the OCL Standard Library simply are not sufficient to express the value of
this operation, which should return the substring matching a regex pattern or null if the pattern does not
match. We need to implement this operation in Java. We can do that by creating a custom Environment
that knows how to look up this operation, and an EvaluationEnvironment that knows how it is
implemented.

First, let’s start by defining a specialization of the EcoreEnvironment . The constructor that is used
to initialize the root environment of an OCL instance will add our regexMatch additional operation
to the String primitive type. The constructor that is used to create nested environments copies the
operation from its parent.

class MyEnvironment extends EcoreEnvironment {
 EOperation regexMatch;

 // this constructor is used to initialize the root environment
 MyEnvironment(EPackage.Registry registry) {
 super(registry);

 defineCustomOperations();
 }

 // this constructor is used to initialize child environments
 MyEnvironment(MyEnvironment parent) {
 super(parent);

 // get the parent's custom operations
 regexMatch = parent.regexMatch;
 }

 // override this to provide visibility of the inherited protected method
 @Override
 protected void setFactory(
 EnvironmentFactory<EPackage, EClassifier, EOperation,
 EStructuralFeature, EEnumLiteral, EParameter, EObject,
 CallOperationAction, SendSignalAction, Constraint, EClass, EObject>
 factory) {
 super.setFactory(factory);
 }

 // use the AbstractEnvironment's mechanism for defining
 // "additional operations" to add our custom operation to
 // OCL's String primitive type
 private void defineCustomOperations() {
 // pattern-matching operation
 regexMatch = EcoreFactory.eINSTANCE.createEOperation();
 regexMatch.setName("regexMatch");
 regexMatch.setEType(getOCLStandardLibrary().getString());
 EParameter parm = EcoreFactory.eINSTANCE.createEParameter();
 parm.setName("pattern");
 parm.setEType(getOCLStandardLibrary().getString());
 regexMatch.getEParameters().add(parm);

 // annotate it so that we will recognize it
 // in the evaluation environment
 EAnnotation annotation = EcoreFactory.eINSTANCE.createEAnnotation();
 annotation.setSource("MyEnvironment");
 regexMatch.getEAnnotations().add(annotation);

 // define it as an additional operation on OCL String
 addOperation(getOCLStandardLibrary().getString(), regexMatch);
 }
}

Next, we will define the corresponding specialization of the EcoreEvaluationEnvironment that
will know how to evaluate calls to this custom operation:

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/ecore/EcoreEnvironment.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/ecore/EcoreEvaluationEnvironment.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 178

class MyEvaluationEnvironment extends EcoreEvaluationEnvironment {
 MyEvaluationEnvironment() {
 super();
 }

 MyEvaluationEnvironment(
 EvaluationEnvironment<EClassifier, EOperation, EStructuralFeature,
 EClass, EObject> parent) {
 super(parent);
 }

 public Object callOperation(EOperation operation, int opcode,
 Object source, Object[] args) {
 if (operation.getEAnnotation("MyEnvironment") == null) {
 // not our custom regex operation
 return super.callOperation(operation, opcode, source, args);
 }

 if ("regexMatch".equals(operation.getName())) {
 Pattern pattern = Pattern.compile((String) args[0]);
 Matcher matcher = pattern.matcher((String) source);

 return matcher.matches()? matcher.group() : null;
 }

 throw new UnsupportedOperationException(); // unknown operation
 }
}

Finally, we define a specialization of the EcoreEnvironmentFactory that creates our custom
environments:

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/ecore/EcoreEnvironmentFactory.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 179

class MyEnvironmentFactory extends EcoreEnvironmentFactory {
 public Environment<EPackage, EClassifier, EOperation, EStructuralFeature,
 EEnumLiteral, EParameter, EObject, CallOperationAction,
 SendSignalAction, Constraint, EClass, EObject> createEnvironment() {
 MyEnvironment result = new MyEnvironment(getEPackageRegistry());
 result.setFactory(this);
 return result;
 }

 public Environment<EPackage, EClassifier, EOperation, EStructuralFeature,
 EEnumLiteral, EParameter, EObject, CallOperationAction,
 SendSignalAction, Constraint, EClass, EObject>
 createEnvironment(Environment<EPackage, EClassifier, EOperation,
 EStructuralFeature, EEnumLiteral, EParameter, EObject,
 CallOperationAction, SendSignalAction, Constraint, EClass,
 EObject> parent) {
 if (!(parent instanceof MyEnvironment)) {
 throw new IllegalArgumentException(
 "Parent environment must be my environment: " + parent);
 }

 MyEnvironment result = new MyEnvironment((MyEnvironment) parent);
 result.setFactory(this);
 return result;
 }

 public EvaluationEnvironment<EClassifier, EOperation, EStructuralFeature,
 EClass, EObject> createEvaluationEnvironment() {
 return new MyEvaluationEnvironment();
 }

 public EvaluationEnvironment<EClassifier, EOperation, EStructuralFeature,
 EClass, EObject> createEvaluationEnvironment(
 EvaluationEnvironment<EClassifier, EOperation, EStructuralFeature,
 EClass, EObject> parent) {
 return new MyEvaluationEnvironment(parent);
 }
}

Now, we can use our environment to parse the kind of expression that we were looking for:

OCL<?, EClassifier, ?, ?, ?, ?, ?, ?, ?, Constraint, EClass, EObject> ocl;
ocl = OCL.newInstance(new MyEnvironmentFactory());

OCLHelper<EClassifier, ?, ?, Constraint> helper = ocl.createOCLHelper();
helper.setContext(MyPackage.Literals.PERSON);

// double the '\' to escape it in a Java string literal
Constraint validSSN = helper.createInvariant(
 "self.ssn.regexMatch('\\d{3}-\\d{3}-\\d{3}') <> null");

Person person = getPersonToValidate();

System.out.printf("%s valid SSN: %b%n", person, ocl.check(person, validSSN));

6.7.3. Selecting a Package Lookup Strategy
When package names are provided in OCL expressions, e.g., when representing types in an
oclIsKindOf call, these names are looked up using a specific strategy. By default, the lookup proceeds
starting at the parsing context, traversing up the package hierarchy. If the package name cannot be
resolved this way, for the Ecore binding a lookup is performed in the EPackage.Registry. By
default, the package name provided is compared to the names of the packages that are contained as values
in the registry.

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 180

In rare cases there may be ambiguous package names. For example, if an OCL expression is to be parsed
using a classifier from the OCL AST metamodel as its context, the context package is ocl::ecore. If
such an expression is trying to reference a type from the EMF Ecore package with package name ecore,
the EMF Ecore package is hidden by the lookup happening relative to the context package. Instead of the
EMF Ecore package, the ocl::ecore package will be found.

Such an ambiguity can be resolved by using a dedicated EPackage.Registry which registers the
otherwise ambiguous packages with a special “URI” that represents a simple alias name for the package.
In order to force the OCL parser to look up packages by those alias names, an option needs to be set on
the OCL environment, as follows:

 Registry r = new EPackageRegistryImpl();
 r.putAll(EPackage.Registry.INSTANCE);
 r.put("EMFEcore", EcorePackage.eINSTANCE);
 r.put("OCLEcore", org.eclipse.ocl.ecore.EcorePackage.eINSTANCE);
 OCL ocl = OCL.newInstance(new EcoreEnvironmentFactory(r));
 ((EcoreEnvironment) ocl.getEnvironment()).setOption(
 ParsingOptions.PACKAGE_LOOKUP_STRATEGY,
 ParsingOptions.PACKAGE_LOOKUP_STRATEGIES.
 LOOKUP_PACKAGE_BY_ALIAS_THEN_NAME);
 Helper helper = ocl.createOCLHelper();
 helper.setContext(
 org.eclipse.ocl.ecore.EcorePackage.eINSTANCE.getOCLExpression());
 org.eclipse.ocl.ecore.OCLExpression expr = helper.createQuery(
 "self.oclIsKindOf(EMFEcore::EClassifier) and not
 self.oclIsKindOf(OCLEcore::OCLExpression)");

In the example above, two packages with ambiguous simple names (EMF Ecore package
and OCL Ecore package, both with simple name ecore) are added with alias names
EMFEcore and OCLEcore, respectively. The package lookup strategy is then set to
LOOKUP_PACKAGE_BY_ALIAS_THEN_NAME which allows OCL expressions to reference the
packages by their aliases, as in self.oclIsKindOf(EMFEcore::EClassifier) and not
self.oclIsKindOf(OCLEcore::OCLExpression).

Note, that the use of a delegating registry (constructor
EPackageRegistryImpl(EPackage.Registry)) does not work because a registry initialized
this way does not forward the call to values() which would be required by the OCL package lookup
implementation. Instead, if the packages registered with the default registry are required, they need to be
copied to a new registry using putAll as shown above.

6.7.4. Customizing Hidden Opposite Lookup and Navigation
The default EcoreEnvironmentFactory produces environments which can find references that
have an annotation with source http://schema.omg.org/spec/MOF/2.0/emof.xml that
have a detail with key Property.oppositeRoleName. In the class that is the type of the reference,
and all its subclasses, for OCL this annotation defines an otherwise “hidden” opposite property which
can be used in OCL expressions. This can be convenient when it is not possible or desirable to define an
explicit opposite reference, e.g., because the class that would have to own the opposite reference can’t
easily be modified or the serialization of that class must not be changed.

The logic used to find these “hidden” opposites and to navigate them is provided by implementations
of the OppositeEndFinder interface. By default, the EcoreEnvironmentFactory uses the
DefaultOppositeEndFinder implementation. It performs the lookup of annotated references
by maintaining a cache based on the Ecore package registry. Successful navigation of those “hidden”
opposites requires an ECrossReferenceAdapter to be registered for the containment hierarchy
or the resource or resource set that should be used as the scope of the navigation.

Obviously, ECrossReferenceAdapter has a significant downside: it responds to “hidden”
opposite navigation requests only based on what has so far been loaded by EMF. If the set of
resources held by an underlying EMF storage system contains more resources than have so far been
loaded into the resource set, non-loaded content from that storage system won’t be considered by the
ECrossReferenceAdapter. Given a store with reasonable search capabilities it is desirable to take
advantage of these capabilities also to perform reverse navigation of those “hidden” opposites. To achieve
this, a specific implementation of the OppositeEndFinder interface can be provided. It may be

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/ecore/EcoreEnvironmentFactory.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/ecore/OppositeEndFinder.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/ecore/DefaultOppositeEndFinder.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/util/ECrossReferenceAdapter.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/util/ECrossReferenceAdapter.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/ecore/OppositeEndFinder.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 181

a specialization of DefaultOppositeEndFinder , e.g., when the reference lookup based on the
Ecore package registry is sufficient and only the navigation behavior shall be redefined:

class MyOppositeEndFinder extends DefaultOppositeEndFinder {
 MyOppositeEndFinder(EPackage.Registry registry) {
 super(registry);
 }

 @Override
 public Object navigateOppositeProperty(EStructuralFeature property, Object target) {
 Collection<Object> result = null;
 EObject eTarget = (EObject) target;
 // do something clever, e.g., using your underlying store's query facility or
 // the new EMF Query2 component (incubation)
 // ...
 return result;
 }
}

With this, OCL can be instantiated using the custom opposite end finder as follows:

 OCL ocl = OCL.newInstance(new EcoreEnvironmentFactoryWithHiddenOpposites(
 EPackage.Registry.INSTANCE, new MyOppositeEndFinder()));
 ...

With this, when the use of a property in an OCL expression cannot be resolved to an attribute or
reference, the opposite end finder is asked to look for a correspondingly-named "hidden" opposite.
Navigation across this “hidden” opposite will then call the navigateOppositeProperty method
on MyOppositeEndFinder.

6.8. OCL Persistence
The Eclipse OCL component implements the OCL Abstract Syntax model as an EMF-based metamodel.
Thus, parsed OCL expressions and constraints can be serialized, for example in XMI documents. The
OCL 2.4 specification is unclear about how the serialization of expressions should look (this will be solved
in the next OCL 2.5 specification), especially where references to demand-created types are concerned.
This topic discusses the approach taken by the Eclipse OCL component to provide a practical solution
to this problem.

6.8.1. The Type Resolver
OCL defines a number of template metaclasses, including the CollectionType metaclass and
its specializations, MessageType, and TupleType. In all of these cases, OCL specifies that
these templates are instantiated as needed in the OCL environment, and that only one instance
of a template exists for any given combination of template arguments. For example, only one
OrderedSet(String) exists and it is created on the occasion when it is first needed. Likewise,
the OclMessage type for invocations of the EModelElement::getEAnnotation(EString)
operation and the Tuple{a : String, b : EClass} type.

The problem is, that the OCL Specification does not indicate how expressions that reference such
demand-created types can be persisted, because it does not define what should own these types. A
similar problem exists for additional operations and attributes defined in OCL via def: expressions. The
TypeResolver API is responsible for the demand-creation of these types and for their persistence.

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/ecore/DefaultOppositeEndFinder.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/TypeResolver.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 182

Every Environment has a TypeResolver that persists demand-created types and additional
features. For a client that doesn’t require persistence, the TypeResolver will create a Resource with
the dummy ocl:// scheme (no resource factory is provided for this scheme).

A client that does require persistence of OCL expressions and these demand-created
elements should provide a specific resource in which to store them, either via the OCL
class’s newInstance(EnvironmentFactory, Resource) factory method or via the
EnvironmentFactory interface’s load(Resource) method.

Resource modelResource = getResourceSet().getResource(
 URI.createPlatformResourceURI("/models/My.ecore", true), true);

// persist demand-created types etc. in my model resource
OCL<?, EClassifier, ?, ?, ?, ?, ?, ?, ?, Constraint, EClass, EObject> ocl;
ocl = OCL.newInstance(EcoreEnvironmentFactory.INSTANCE, myResource);

// use the OCL to parse constraints, store them in the Ecore model,
// and save everything together in one resource for a consistent,
// self-contained OCL environment

...

The AbstractTypeResolver class creates packages in which to store the different elements that
it creates: collection types, message types, tuple types, and additional operations and attributes. These
last are owned by classes that “shadow” the classifiers in which context they are defined, in the manner
by which the OCL specification’s adaptation for EMOF indicates that operations are to be “owned” by
EMOF DataType s.

An environment implementation can customize the way these demand-created elements are stored,
by choosing different packages or using some other strategy altogether. Or, using the default
TypeResolver implementation, a client of the OCL parser can find the demand-created objects in the
resolver’s resource and relocate them as needed.

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/Environment.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/OCL.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/EnvironmentFactory.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/AbstractTypeResolver.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 183

6.9. Creating Metamodel Bindings
The Eclipse OCL component provides a generic specification of the OCL Abstract Syntax Model plus
bindings for two popular Eclipse metamodels: Ecore and UML. Users of the OCL API can likewise create
bindings for their metamodels, to integrate OCL with their modeling languages.

The Environment interface has a generic type signature with several parameters, representing the
metamodeling constructs required by OCL, that it borrows from UML, EMOF, and the other metamodels
that it targets. The Javadoc for that interface defines the mappings, and the same type parameter names
are used consistently throughout the OCL API.

To provide a metamodel binding, a client must provide implementations of the following interfaces:

• Environment and EnvironmentFactory, supplying suitable substitutions for the generic type
parameters. Note that not all of these are actually required; for example, Ecore does not have the
concept of State, so it just substitutes EObject

• EvaluationEnvironment for accessing properties of run-time instances of models

• UMLReflection for introspecting models (instances of thetarget metamodel)

• OCLStandardLibrary, providing the instances of the metamodel’s Classifier metaclass that
implement the OCL Standard Library types

• OCLFactory, providing a factory for all of the metaclasses of the Abstract Syntax Model

This last item, above, necessitates furthermore that the metamodel binding provide a concrete
specialization of the Abstract Syntax Model (in its entirety) that mixes in the target metamodel’s
correspondents of the UML Classifier and TypedElement metaclasses. The former is required
to provide compatibility of the metaclasses in the OCL Types with the target metamodel’s type system.
The latter is required for compatibility of the metaclasses in the OCL Expressions package with the
target metamodel’s typed elements.

6.9.1. The OCL Abstract Syntax Model
The following diagram summarizes the metaclasses of the OCL Types package:

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/Environment.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 184

The following diagram summarizes the call expression metaclasses of the OCL Expressions package:

The following diagram summarizes the literal expression metaclasses of the OCL Expressions
package:

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 185

The following diagram summarizes the remaining metaclasses of the OCL Expressions package:

6.10. Incrementally Re-Evaluating OCL Expressions
Using the Impact Analyzer

When Ecore metamodels use many OCL invariants and the models constrained by these invariants grow
large, re-evaluating the invariants becomes a performance challenge. As OCL expressions can navigate
freely across resource boundaries, changes to a model element in one resource can easily affect invariants
for model elements in other resources. To reliably catch all invalidated constraints after a change it would
be necessary to re-evaluate all invariants on all their context objects regardless their resource. This does
not scale sufficiently well.

The ImpactAnalyzerFactory interface allows tool builders to efficiently determine a much
smaller set of model elements on which re-evaluation of expressions is necessary after a change.

Given an OCL expression, the factory can be used to create an impact analyzer for a single expression
as follows:

final OCLExpression e = ...;
final ImpactAnalyzer impactAnalyzer =
 ImpactAnalyzerFactory.INSTANCE.createImpactAnalyzer(
 e, // the expression to re-evaluate incrementally
 false, // whether to re-evaluate when new context objects appear
 OCLFactory.INSTANCE);

The impact analyzer obtained this way can create a change notification filter which can then be used to
register for notifications that indicate a change which may affect the value of the expression. Consider
the following example:

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/examples/impactanalyzer/ImpactAnalyzerFactory.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/ecore/OCLExpression.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 186

ResourceSet myResourceSet = ...;
EventFilter filter = impactAnalyzer.createFilterForExpression();
EventManager eventManager =
 EventManagerFactory.eINSTANCE.getEventManagerFor(myResourceSet);
eventManager.subscribe(filter, new AdapterImpl() {
 public void notifyChanged(Notification notification) {
 Collection<EObject> valueMayHaveChangedOn =
 impactAnalyzer.getContextObjects(notification);
 for (EObject eo : valueMayHaveChangedOn) {
 // ... perform some re-evaluation action of e for context eo here
 }
 }
});

The event manager can be used to register the event filters of several OCL expressions with their
respective adapters. The adapters for different expressions do not have to be distinct but may optionally
be shared. The following figure shows how the classes relate, as a UML class diagram:

For each OCL expression a new impact analyzer is used. The event filters produced by them can be
registered with the same event manager. The following figure shows a typical instance collaboration
diagram in UML notation.

The event manager factory and the event managers it produces lay the scalable foundation for the re-
evaluation process. Even if it has to manage many subscriptions, its performance does not degrade as it
would if the change notification filters were evaluated one after the other. With this it becomes possible
to register many OCL expressions for change impact analysis as shown above. The figure below shows
a typical default configuration of an event manager, as a UML instance collaboration diagram.

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/examples/eventmanager/EventManagerFactory.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/examples/eventmanager/EventManager.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 187

The event manager in the figure is configured to listen to the change events coming from anything inside
the resource set. In this example it is shown with three different event filters, each coming with its own
adapter handling those change notifications matches by the respective filter.

As described in more detail in the Javadoc, event managers may be re-used, temporarily deactivated and
new ones may be created specifically upon request. This way it is possible to have several event managers,
e.g., listening for changes during different phases of a model’s life cycle without having to create and
initialize the event managers again and again. Also, an event manager is not restricted to listen to the
changes of exactly one resource set. The following figure shows a not so typical configuration, again as
a UML instance collaboration diagram.

6.10.1. Using the Impact Analyzer in EMF Editors
The org.eclipse.ocl.examples.impactanalyzer.ui package provides experimental
support for embedding the impact analyzer in EMF editors. Adding the lines

@SuppressWarnings("unused") // not read; just used to avoid GC
private Revalidator revalidator; // from collecting re-validator

to the field declarations of an editor class, and adding the lines

revalidator = new Revalidator(editingDomain, OCLFactory.INSTANCE,
 DefaultOppositeEndFinder.getInstance(),
 MyMetamodelEcorePackage.eINSTANCE);

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 188

at the end of the editor class’s createModel() method turns on this experimental support for the
respective editors. Consequently, changes in the editor’s ResourceSet will trigger the re-evaluation
of the affected invariants on the set of context objects determined by the impact analyzer. Error markers
of successfully validated constraints will be removed, markers for invalid constraints are produced. As
is obvious also from the examples part of the package name, this is not yet production-ready code. It
may change or disappear without notice.

6.10.2. Algorithm Outline
The basic idea on which the impact analyzer’s algorithm is based is this: take the EMF change notification
and see which elementary subexpressions, such as property call expressions, are immediately affected
by the change. From these pairs of (subexpression, model element) it is possible to walk
the expression tree and navigate “backwards” from the model element to the candidates for the self
variable for which the subexpression may evaluate to the model element indicated by the notification.
Recursive operation calls and general ->iterate(...) expressions complicate matters and lead to
a recursive algorithm for the impact analysis.

It is permissible to use calls to OCL-specified operations. The impact analyzer will trace changes
considering the called operation’s body expression.

The use of allInstances inside an expression may be nasty for analyzing the impact of a change
because then it may no longer be possible to trace the change back to the possible values for self.
In those cases the impact analyzer will simply “give up” and return a collection of all instances of the
expression’s context type and its subtypes.

6.10.3. Impact Analyzer Configuration, Scopes
The impact analyzer can be created in several different configurations as explained in detail in the
Javadocs . Particularly noteworthy is the relationship between the OppositeEndFinder and the way
an allInstance expression is evaluated. Both depend on a notion of lookup scope. EMF does not
provide any particular rules or conventions in this regard other than assuming that what has been loaded
into a ResourceSet is what tools can see. While this is a working procedure for forward navigation,
it doesn’t help in defining a scope for allInstances and reverse navigation when there is no explicit
opposite property.

For this purpose, Eclipse OCL has introduced the OppositeEndFinder interface through
which reverse navigations of references and allInstances lookups can be performed. Its default
implementation is based on the EMF default which is to consider the contents of a ResourceSet the
universe. Other implementations are possible, however, such as one that uses EMF Query2 to perform
the necessary lookups.

A default OCL evaluator will always use the current ResourceSet to determine the set of all instances
of a type. If a client has used an opposite end finder that implements a certain lookup strategy then
the default allInstances evaluation is most likely inconsistent with the scope definitions of that
opposite end finder. To avoid such problems, a specific OCL factory can create OCL instances that ensure
consistency between opposite navigation and allInstances evaluation.

Other configuration options (see ActivationOption concern the specific algorithm used for tracing
back from a change notification to the set of context objects for which the expression may have changed
its value. The default selection has proven to be the fastest for a set of benchmarks. However, mileage
may vary, and we’d like to encourage users to experiment also with the non-default configurations.

6.11. Delegates
EMF provides three delegation mechanisms that enable functionality not directly supported by EMF to
be delegated to a technology that can support it.

• a Validation Delegate supports checking additional invariants on an EClassifier

• a Setting Delegate supports getting an initial or derived computed value for an EStructuralFeature

• an Invocation Delegate supports the execution of a function defined by an EOperation

and also

• a Query Delegate supports the execution of a function not defined by an EOperation

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/examples/impactanalyzer/ImpactAnalyzerFactory.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/ecore/opposites/OppositeEndFinder.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/ecore/opposites/OppositeEndFinder.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/examples/impactanalyzer/util/OCL.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/examples/impactanalyzer/configuration/ActivationOption.html

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 189

When you use the OCLinEcore editor, the required EAnnotations to support delegation are provided
automatically. This section provides sufficient detail to allow them to be maintained manually using the
Sample Ecore Editor or Java code.

These EAnnotations ensure that delegates can be used for both genmodeled and reflective models.
The use of genmodel to generate Java classes for your metamodel has significant performance benefits
for modeling, but currently makes little difference for OCL execution. The use of genmodel has the
disadvantage that you must install the Java classes and so the user of the Java classes must run in a
different Eclipse or standalone session to the developer. Conversely, using reflective models allows both
developer and user to share the same Eclipse session.

6.11.1. GenModel Settings
There is one GenModel setting that needs to be correctly set to ensure that OCL within generated Java
classes can successfully be invoked by itself. Make sure that support for reflective operation invocation
is generated by setting the Operation Reflection option to true.

6.11.2. OCL Delegate URIs
Each application implementing delegation has an associated Delegate URI, which is

• http://www.eclipse.org/emf/2002/Ecore/OCL for the classic evaluator

• http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot for the Pivot evaluator

Only the http://www.eclipse.org/emf/2002/Ecore/OCL was available in the Helios
release and so the Helios release of the OCLinEcore editor used that URI.

The OCLinEcore editor uses the Pivot metamodel which is more accurate and OMG compliant and so
in the Indigo release, the OCLinEcore editor uses the http://www.eclipse.org/emf/2002/
Ecore/OCL/Pivot URI and converts all incoming usage of http://www.eclipse.org/
emf/2002/Ecore/OCL URI to http://www.eclipse.org/emf/2002/Ecore/OCL/
Pivot.

As described in The two Eclipse OCLs the Pivot evaluator uses an intermediate Pivot model to hide Ecore
and UML2 and so allow full OMG-compliance. The Pivot evaluator is only available when the OCL
Examples and Editors feature has been installed as described in Installation.

The OCL Delegate URIs are registered using the

• org.eclipse.emf.ecore.invocation_delegate

• org.eclipse.emf.ecore.setting_delegate

• org.eclipse.emf.ecore.query_delegate

• org.eclipse.emf.ecore.validation_delegate

extension points.

6.11.3. Standalone Initialization
The initialization code for standalone usage of EMF delegates is given in the Standalone section.

6.11.4. Invocation Delegates
An invocation delegate is invoked to execute the body of an EOperation. An invocation delegate must
be registered for the EPackage of the EClassifier of the EOperation.

The EPackage registration is provided by an EAnnotation on the EPackage

• source = http://www.eclipse.org/emf/2002/Ecore

• key = invocationDelegates

• value = OCL-Delegate-URI

The invocation delegate is provided by an EAnnotation on the EOperation

• source = OCL-Delegate-URI

• key = body

• value = OCL-expression

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 190

The OCL-expression is evaluated to provide the EOperation value with the containing EClassifier
as the self context object and the EParameters accessible as parameters from OCL. The return type of
the OCL-expression must conform to the return type of the EOperation.

6.11.5. Setting Delegates
A setting delegate is invoked to provide the initial or derived value of an EStructuralFeature. A setting
delegate must be been registered for the EPackage of the EClassifier of the EStructuralFeature.

The EPackage registration is provided by an EAnnotation on the EPackage

• source = http://www.eclipse.org/emf/2002/Ecore

• key = settingDelegates

• value = OCL-Delegate-URI

The setting delegate is provided by an EAnnotation on the EStructuralFeature

• source = OCL-Delegate-URI

• key = derivation

• value = OCL-expression

The OCL-expression is evaluated to provide the EStructuralFeature value with the containing
EClassifier as the self context object. The result type of the OCL-expression must conform to
the type of the EStructuralFeature.

An initial rather than derivation value may be specified. The initial is ignored if a
derivation is also specified.

6.11.6. Validation Delegates
A validation delegate is invoked to provide additional validation of an EClassifier. A validation delegate
must be registered for the EPackage of the EClassifier for which the EClassifier provides any Ecore
invariants or Ecore constraints. Both Ecore constraints and invariants constrain an EClassifier, the
difference is that an Ecore invariant is realised by an EOperation and so an Ecore invariant may be re-
used by modeling environments that may wish to selectively check or re-check constraints.

The EPackage registration is provided by an EAnnotation on the EPackage

• source = http://www.eclipse.org/emf/2002/Ecore

• key = validationDelegates

• value = OCL-Delegate-URI

All Ecore constraints must be listed in an EAnnotation on the EClassifier

• source = http://www.eclipse.org/emf/2002/Ecore

• key = constraints

• value = constraintName1 constraintName2 constraintName3

The validation delegate for each Ecore constraint is provided by a further EAnnotation on the EClassifier

• source = OCL-Delegate-URI

• key = constraintName

• value = OCL-expression

The validation delegate for each Ecore invariant is provided by an EAnnotation on the EOperation

• source = OCL-Delegate-URI

• key = body

• value = OCL-expression

The OCL-expression is evaluated to validate the EClassifier with the EClassifier as the self
context object. The result type of the OCL-expression must be Boolean.

6.11.7. Validation Messages
When a validation fails EMF generates a default diagnostic of the form The 'constraintName'
is violated on 'constrainedObject' .

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 191

If the OCLinEcoreEObjectValidator or CompleteOCLEObjectValidator are used a custom message may
be supplied using an additional EAnnotation on the EClassifier.

• source = OCL-Delegate-URI

• key = constraintName $message

• value = OCL-expression

The OCL-expression is evaluated to produce the custom message with the EClassifier as the self
context object. The result type of the OCL-expression must be String.

The severity of the diagnostic can also be customized by exploiting the four values of the Boolean value
of the constraint evaluation.

• true indicates successful validation

• false indicates unsuccessful validation with warning severity

• null indicates unsuccessful validation with error severity

• invalid indicates a failure to perform validation (error severity)

6.11.8. Query Delegates
A query delegate is invoked to evaluate a parameterized query on a EObject for which there is no
corresponding EOperation. A query delegate is registered to install this query and allow its compiled
form to be cached. The delegate may then be invoked as many times as required for compatible context
objects and parameters.

This facility enables an EMF application to execute OCL without declaring or instantiating any OCL
classes.

The query delegate registration is analogous to direct use of
OCL.newInstance().createHelper().createQuery()

The query delegate execution is analogous to OCL.evaluate()

6.12. Ecore/UML Standalone Configuration
If you use Eclipse OCL within Eclipse you should find that the appropriate registrations are provided for
you automatically by the plugin registration mechanisms.

However if you use Eclipse OCL outside Eclipse, for instance in JUnit tests, you must provide the
corresponding registrations in your code.

6.12.1. Ecore
For the Ecore metamodel, the required registrations should be provided by invoking
org.eclipse.ocl.ecore.OCL.initialize(ResourceSet).

This may be invoked with a null argument to install the registrations in the global EPackage.Registry. This
is not normally recommended, but since this is for your application, the integrity of the global registry
is your responsibility.

It is normally recommended to install the registrations solely for use in your own ResourceSet and to
pass that to the initialize routine.

This initialization ensures that *.ecore is understood.

If you want to use EMF delegates to dispatch OCL, the required registrations may be provided by
org.eclipse.ocl.ecore.delegate.OCLDelegateDomain.initialize(ResourceSet).

This may be invoked with a null argument to install the registrations in the global EPackage.Registry
rather than a specified local registry.

6.12.2. UML
For the UML metamodel, the required registrations should be provided in a similar way by invoking
org.eclipse.ocl.uml.OCL.initialize(ResourceSet).

This initialization ensures that *.uml is understood that http://www.eclipse.org/ocl/1.1.0/
oclstdlib.uml is known and that standard pathmap: locations are resolvable. It also invokes

Classic Ecore/UML
Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 192

org.eclipse.uml2.uml.resources.util.UMLResourcesUtil.init(ResourceSet)
to ensure that all Eclipse and OMG UML namespaces and extensions are registered..

6.12.3. Classpath
A precise Java 5 classpath for the current release may be obtained as a diagnostic output near the end of
the console output of the Jenkins Ecore Classpath or Jenkins UML Classpath jobs.

6.12.4. Xtext Editors
The Xtext Editors use the Pivot binding and so their initialiation is described in “Pivot Standalone
Configuration”#PivotStandalone.

The Xtext editors may be used with the Ecore or UML bindings in so far as the Complete OCL editor
provides a *.ocl document that may be parsed by the LPG parser, and the OCLinEcore editor provides
embedded OCL that may be executed by either evaluator.

https://ci.eclipse.org/ocl/job/ocl-ecore-standalone/lastBuild/console
https://ci.eclipse.org/ocl/job/ocl-uml-standalone/lastBuild/console

Eclipse OCL 2020-06 (6.12.0) 193

Chapter 7. Unified or Pivot
Programmers Guide

The Unified or Pivot Programmers Guide describes the ways in which the Pivot binding Eclipse OCL
can be used from Java programs.

The Pivot binding was first available as an examples quality prototype in 3.1.0 (Indigo). The Pivot binding
became the preferred binding in 6.0.0 (Mars). The older Ecore and UML bindings are described in a
separate Ecore/UML Programmers Guide.

The OCL Parser/Interpreter provides an implementation of the Object Constraint Language 2.4
specification for EMF-based metamodels and models. It offers OCL constraint and query parsing and
evaluation, model-based validation, and provides an infrastructure for content assist in textual editors.

The following features are supported in the current version:

• Classifier invariant constraints

• Operation precondition and postcondition constraints and body conditions

• Property constraints (initial-value and derivation)

• Attribute and operation definitions (def: expressions)

• Package context declaration

• Basic values and types

• Collection types

• Navigation of attributes and association ends

• Operation invocation

• Iteration expressions (all standard iterators)

• Let expressions

• If expressions

• Tuples

• Message expressions, including unspecified values

• Operations predefined by OCL: allInstances(), oclIsKindOf(), oclIsTypeOf(), oclAsType(),
oclIsNew()

• Escape syntax for illegal names: type, operation, attribute, etc. names that correspond to OCL reserved
words can be escaped in the standard fashion using a leading underscore (‘_’). In addition, names that
contain spaces or tabs can be escaped by enclosing them in double-quotes (‘"’; this is non-standard).
e.g., self.ownedRule->forAll(c : Constraint | c._context = self)

The above constructs are supported by the parser for parsing and for evaluation, with the exception of the
oclIsNew() operation and message expressions. All of the above are supported for both Ecore and UML
models. The following are supported by default for UML (both in parsing and evaluation):

• Navigation of non-navigable association ends (including those that are owned by the association)

• Qualified association end navigation

• Navigation to association classes, including source qualifiers

• Operations predefined by OCL: oclIsInState()

The following features are provided in addition to the OCL specification:

• String case conversion operations: toUpper(), toLower()

• Support for comparison (<, <=, etc.) and sorting of any java Comparable s of conformant types

• Transitive closure of associations: closure(expr : OCLExpression) iterator

• Navigation of “hidden” opposites of references specified in Ecore models using a
Property.oppositeRoleName annotation with source http://schema.omg.org/spec/
MOF/2.0/emof.xml on the forward reference, producing an OppositePropertyCallExp
expression

http://www.omg.org/spec/OCL

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 194

The OCL implementation is defined in plug-ins for convenient deployment in Eclipse, but as is the case
for EMF, it can also be used stand-alone. The plug-ins are partitioned thus:

• org.eclipse.ocl.pivot: the neutral Pivot model, interfaces, Standard Library and evaluator.

• org.eclipse.ocl.examples.codegen: the OCL to Java code generator.

• org.eclipse.ocl.examples.debug...: the extensible debugger.

• org.eclipse.ocl.examples.validity: the Validation View.

• org.eclipse.ocl.xtext...: Xtext editors.

7.1. Validators
When using the Pivot metamodel, there are two specialized validators available to support integration of
OCL in to a larger Ecore environment.

7.1.1. OCLinEcoreEObjectValidator
Unfortunately, in the Indigo release, EMF does not support this customization and so must be activated
by explicitly using an EValidator that is aware of the ValidationDelegateExtension extended API. This
is available by using the OCLinEcoreEObjectValidator, which you may install globally by:

EValidator.Registry.INSTANCE.put(null, new OCLinEcoreEObjectValidator());

or more selectively by adjusting the inheritance of the Validator class generated by EMF from (for a
model of a Company):

import org.eclipse.emf.ecore.util.EObjectValidator;

/**
 * <!-- begin-user-doc -->
 * The Validator for the model.
 * <!-- end-user-doc -->
 * @see company.CompanyPackage
 */
public class CompanyValidator extends EObjectValidator {

to

import org.eclipse.ocl.xtext.oclinecore.validation.OCLinEcoreEObjectValidator;

/**
 * <!-- begin-user-doc -->
 * The Validator for the model.
 * <!-- end-user-doc -->
 * @see company.CompanyPackage
 * @generated not
 */
public class CompanyValidator extends OCLinEcoreEObjectValidator {

Note the @generated not that indicates that the class interface is manually defined. Do not use
@generated NOT since that indicates that the whole class is manually defined.

7.1.2. CompleteOCLEObjectValidator
The CompleteOCLEObjectValidator is used to enable Complete OCL documents to participate in the
validation processing of an Xtext editor.

The APIs for merging Complete OCL and Ecore as intermediate Pivots and then migrating the Pivot back
to Ecore are experimental.

7.2. The Pivot Evaluator
The Pivot evaluator is a complete reimplementation of the classic evaluator to exploit experience and
the Pivot metamodel

• numeric growth beyond 32/64 bits is accommodated

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 195

• equal numbers are equal regardless of type

• templated types are supported

• library operations are modeled and extensible

• oclType() returns a Class offering full reflection without loss of static typing

• optimised virtual function dispatch tables

• code generation to Java

The APIs of the two evaluators are very similar since Ecore compatibility is very important. For basic
OCL evaluation, users should not notice any functional difference between the two evaluators. The Pivot
evaluator is generally between 2 and 5 times faster as well as being more accurate. The code generated
evaluation may be a further 20 times faster.

7.2.1. The Evolving Pivot Value System
The classic evaluator uses Ecore and Java library representations such as EObject, Integer, String and Set
directly for evaluation. This avoids conversion costs but incurs OCL accuracy challenges for numeric
equality and growth.

The Juno release of the Pivot evaluator use polymorphic Value representations such as EObjectValue,
IntegerValue, StringValue and SetValue. This avoids the OCL accuracy difficulties but requires wrapper
objects and incurs conversion costs wherever a compatible Ecore API is in use.

The IntegerValue and RealValue classes avoid the equivalence and accuracy problems of Integer and
Double by implementing Object.equals(Object) with OCL semantics.

The costs of the polymorphic Boolean, String and EObject wrappers became apparent when testing the
code generator and so the Kepler and Luna releases use a hybrid representation. Unboxed values (the
natural Ecore and Java representation) are used wherever OCL and Java have compatible semantics, that
is for Boolean, String, null, invalid/exception and EObjects that are not Types. Boxed polymorphic value
representations are used wherever OCL and Java semantics differ, that is for IntegerValue, RealValue,
CollectionValue, TupleValue and TypeValue. This avoids unnecessary conversion costs, but requires
many instanceof tests to compensate for the lack of Value polymorphism. When generating code, static
analysis can often eliminate many of the instanceof cases and so the hybrid representation is faster.

7.2.2. The Pivot Value System
Every value has a unique type identity supervised by the IdManager class. This unique identity can be
shared by multiple OCL applications that may have distinct type systems as a result of Complete OCL
complements.

Every value has a type that is determined from its type identity by a type-system-specific IdResolver
instance, which also supports conversion between boxed and unboxed value representations.

7.2.2.1. Value Conversions
The values are managed by a ValueFactory which provides many utility methods such as
ValueFactory.valueOf(Object) for creating a Value from a naked Java object. The reverse
conversion from a value to a naked Java object may be be performed by Value.asObject() with
methods in derived value classes providing stronger type returns.

7.2.2.2. Polymorphic Integers
The IntegerValue interface has a family of IntIntegerValueImpl, LongIntegerValueImpl and
BigIntegerValueImpl realizations that use Java types internally but support numeric growth where
necessary without imposing the overheads of BigInteger on the vast majority of mundane usages.
The wrapping of int in IntegerIntValueImpl is very comparable to the wrapping of int in
java.lang.Integer so there is little performance or representation cost.

This enables the Pivot evaluator to handle unlimited integers as specified by the OMG OCL specification.

Prior to the Juno release the handling of greater than 32 bit integers in the classic
evaluator was suspect. The Juno release enhances support to allow for 64 bit integers
but makes no provision for greater than 64 bit evaluations.

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 196

7.2.2.3. Polymorphic Collections
The CollectionValue interface has multiple implementations for Bag, OrderedSet, Sequence and
Set with implementations that observe OMG OCL semantics.

The classic implementation uses Java collections directly, which unfortunately means
that the Java semantics for equality is used. Consequently the classic evaluator
incorrectly evaluates Set{1,1.0}->size() as 2.

Using a distinct hierarchy of collection classes opens up opportunities for smart operation, such as in-
place update for collections that are rendered redundant by a calculation.

The classic implementation creates a new collection at every opportunity.

7.2.2.4. Polymorphic Objects
The ObjectValue interface has an implementation for EObject and further implementations for more
specialized objects such as types.

The Pivot evaluator can be used on alternate data models by providing an alternate ObjectValue to
wrap an alternative form of data object.

The classic implementation uses EObject directly, which makes use of non-EObject
data models rather hard.

7.2.3. The Pivot Evaluator Type System
The Pivot Evaluator uses a very lightweight type system so that alternate implementations can be used.

For compiled evaluation, a dispatch-table based implementation is used.

For OCL compilation, a UML-aligned representation of the combined UML, OCL, library and user type
systems is used.

The classic implementation uses either UML or Ecore meta-models directly, with Ecore
as the meta-meta-model. Consequently there was no support for oclType(). Reflection
was available in the non-OMF Ecore domain, so the meta-meta-class is “EClass” rather
than “Class”.

7.2.4. The Pivot Evaluator Implementation System
The Pivot evaluator may be used in an interpreted form similar to the classic evaluator. In this form the
evaluator performs a tree-walk over the Abstract Syntax Tree of the OCL expression. Languages that
extend OCL may extend this tree-walk by implementing the relevant visitor evaluations for additional
AST nodes.

A partially optimized code generator is available for the Pivot evaluator for which the code generator
walks the AST at compile-time. The code generator may be extended to support code generation for
languages that extend OCL. See the QVTi code generator in the QVTd project as an example.

7.2.5. Polymorphic Implementations
The OCL Standard Library comprises packages of classes with one class per library feature, each class
implementing the polymorphic implementation interface.

Provision of additional library function therefore requires

• provision of the Java class for the library feature

• declaration of the library feature

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 197

Library features (properties, operations and iterations) are declared in a Standard Library model that
identifies the invocation signature and binds it to a Java implementation.

The extract from /org.eclipse.ocl.pivot/model/OCL-2.5.oclstdlib shows the
declaration of the Collection type as a templated type with a T parameter. The Collection
type conformsTo (extends/inherits/generalizes) the OclAny type and is an instance of the
CollectionType meta-type.

The asSet operation takes no arguments and returns a Set(T),
a set of the collection template type. The declaration is bound
to org.eclipse.ocl.pivot.library.collection.CollectionAsSetOperation
which is the Java class name of the implementation.

The exists iteration has two overloads, taking one or two iterators of the collection template type.
The iteration body is a lambda expression operating on a collection template element with no additional
arguments to return a Boolean value. The iteration also returns a Boolean value. The same Java
implementation class is used for both one and two argument forms.

The corresponding implementations in the classic evaluator were mostly inlined within
the EvaluationVisitorImpl.visitOperationCallExp method and so
were difficult to extend.

The corresponding declarations in the classic evaluator were partially modeled in
oclstdlib.ecore or oclstdlib.uml, although in practice an equivalent manually code
model initialization is used. The type declarations used by the parser and analyzer are
independently coded and do not support iterations as modeled concepts.

7.3. Pivot Standalone Configuration
If you use Eclipse OCL within Eclipse you should find that the appropriate registrations are provided for
you automatically by the plugin registration mechanisms.

However if you use Eclipse OCL outside Eclipse, for instance in JUnit tests, you should initialize the
appropriate language support using at least one of.

org.eclipse.ocl.xtext.completeocl.
 CompleteOCLStandaloneSetup.doSetup(); // *.ocl
org.eclipse.ocl.xtext.essentialocl.
 EssentialOCLStandaloneSetup.doSetup(); // *.essentialocl
org.eclipse.ocl.xtext.oclinecore.
 OCLinEcoreStandaloneSetup.doSetup(); // *.ecore, *.oclinecore
org.eclipse.ocl.xtext.oclstdlib.
 OCLstdlibStandaloneSetup.doSetup(); // *.oclstdlib

Failure to initialize language support usually results in one of the following diagnostics.

No OCL Standard Library content available
No 'XXX' type in the OCL Standard Library

If you want to use UML models, the optional functionality must be activated.

org.eclipse.ocl.pivot.uml.UMLStandaloneSetup.init(); // *.uml

The following initializations that were once recommended should happen automatically.

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 198

org.eclipse.ocl.pivot.OCL.initialize(resourceSet);
org.eclipse.ocl.pivot.uml.internal.es2as.
 UML2AS.initialize(resourceSet);
org.eclipse.ocl.pivot.model.OCLstdlib.install();
org.eclipse.ocl.pivot.internal.delegate.
 OCLDelegateDomain.initialize(resourceSet);
org.eclipse.ocl.pivot.internal.resource.
 StandaloneProjectMap.getAdapter(resourceSet);

These are elaborated on below.

7.3.1. Models
For the Pivot metamodel, the required registrations should be provided by invoking
org.eclipse.ocl.pivot.OCL.initialize(ResourceSet). This initialization ensures
that *.ecore is understood.

If *.uml support is also required, invoke
org.eclipse.ocl.pivot.uml.internal.es2as.UML2AS.initialize(ResourceSet)
as well. This initialization ensures that *.uml is understood and
that standard pathmap: locations are resolvable. It also invokes
org.eclipse.uml2.uml.resources.util.UMLResourcesUtil.init(ResourceSet)
to ensure that all Eclipse and OMG UML namespaces and extensions are registered.

7.3.2. OCL Standard Library
If you want to use the default OCL Standard Library you should invoke
org.eclipse.ocl.pivot.model.OCLstdlib.install() which installs a compiled
shareable form of /org.eclipse.ocl.pivot/model/OCL-2.5.oclstdlib.

If you want to use an alternate library examine the code for the standard installation above, and
if you want to compile your library examine the /org.eclipse.ocl.examples.build/
src/org/eclipse/ocl/examples/build/GenerateOCLstdlibModel.mwe2 launcher
for the /org.eclipse.ocl.examples.build/src/org/eclipse/ocl/examples/
build/xtend/GenerateOCLstdlibXtend.xtend Xtend template.

Note that the library is extensible and importable so you may import your own library that in turn imports
the standard library.

If you neglect to install an OCL Standard Library, you get the error “No OCL Standard Library content
available”. If you provide a custom library that fails to meet the miinimal requirements of defining the
basic library types (e.g. Boolean, Set, Tuple) and methods (e.g. OclAny::“=”) you get an error such as
“No 'Boolean' type in the OCL Standard Library”.

7.3.3. Pivot Delegates
If you have textual OCL embedded within Ecore models you need to register the EMF delegates so
that EMF gets, calls or validates dispatch the embedded OCL to the OCL delegates. The required
registrations may be provided by OCLDelegateDomain.initialize(ResourceSet) from the
org.eclipse.ocl.pivot.internal.delegate package.

This may be invoked with a null argument to install the registrations in the global EPackage.Registry
rather than a specified local registry.

If you neglect to register delegates before generated EMF classes are initialized, you may get an NPE or
an error of the form "An exception occurred while delegating evaluation of the ..."

7.3.4. Xtext Parsers
If you want to be able to convert any textual form of OCL to its internal pivot form you need to initialize
the relevant parser.

*.ocl Complete OCL documents are initialized by CompleteOCLStandaloneSetup.doSetup().

*.oclinecore metamodels are initialized by OCLinEcoreStandaloneSetup.doSetup()

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 199

*.oclstdlib OCL Standard Library definitions are initialized by
OCLstdlibStandaloneSetup.doSetup().

*.ecore, *.essentialocl, *.uml files or general use of the query API is initialized by
EssentialOCLStandaloneSetup.doSetup().

Each of the above ensures that everything that it requires is installed. The various set ups can be found
in one of the following packages:

org.eclipse.ocl.xtext.completeocl.
org.eclipse.ocl.xtext.essentialocl.
org.eclipse.ocl.xtext.oclinecore.
org.eclipse.ocl.xtext.oclstdlib.

7.3.5. platform:/plugin and platform:/resource URIs
If you want to be able to use platform:/plugin/... or platform:/resource/... URIs in a
standalone configuration you need to configure the EMF package and URI map registries appropriately.
This is a costly activity that involves scanning the classpath and exploiting the content of any plugin.xml
and MANIFEST.MF files that are found.

org.eclipse.ocl.pivot.internal.resource.StandaloneProjectMap.getAdapter(resourceSet);

creates a StandaloneProjectMap to cache all the scan results, initializes the ResourceSet and
installs itself as an adapter on the ResourceSet so that it can be retrieved again if needed. Users are
strongly recommended to ensure that a single StandaloneProjectMap is shared by all clients and
so avoid incurring the classpath scan cost more than once.

(The StandaloneProjectMap has no OCL-specific functionality; it just cures a major problem in
the standalone usage of EMF.)

7.3.6. Classpath
If your standalone environment supports OSGI bundles, as will be the case when you use Eclipse to
launch a JUnit test or a transformation, the required plugin dependencies are easily configured in the
MANIFEST.MF using JDT quick fixes, or the Manifest editor.

For a totally standalone Java launch, you must identify the exact spelling of each JAR that you require and
identify it on your Java classpath. The Eclipse JARs may be found in the plugins folder adjacent to your
eclipse.exe. So you may need org.eclipse.ocl.common_1.0.0.v20120516-1543.jar
amongst many others. The required JARs can be recursively determined by looking at the Class Not
Found Exceptions from the Java launch and locating the plugin with a similar name prefix. This is very
tedious and has to be repeated each time you upgrade, so don’t do it. Use OSGI. However if you must,
the following dependency trees may provide some clues.

The dependency tree for the basic parsing and evaluation is:

org.eclipse.ocl.common
 org.eclipse.ocl.pivot
 org.eclipse.ocl.xtext.base
 org.eclipse.ocl.xtext.essentialocl
 org.eclipse.ocl.xtext.completeocl
 org.eclipse.ocl.xtext.oclinecore
 org.eclipse.ocl.xtext.oclstdlib

Additionally the UI requires

org.eclipse.ocl.common.ui
 org.eclipse.ocl.examples.markup
 org.eclipse.ocl.examples.markup.ui
 org.eclipse.ocl.xtext.essentialocl.ui
 org.eclipse.ocl.xtext.completeocl.ui
 org.eclipse.ocl.xtext.oclinecore.ui
 org.eclipse.ocl.xtext.oclstdlib.ui
 org.eclipse.ocl.examples.xtext.console
 org.eclipse.ocl.pivot.ui

You may also need the Xtext, EMF, MWE, Orbit plugins and their dependencies

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 200

com.google.guava
com.google.inject
org.apache.log4j
org.eclipse.emf.common
 org.eclipse.emf.ecore
 org.eclipse.emf.codegen
 org.eclipse.emf.ecore.xmi
org.eclipse.xtext
 org.eclipse.xtext.common.types
 org.eclipse.xtext.common.types.ui
 org.eclipse.xtext.ui
 org.eclipse.xtext.ui.shared
 org.eclipse.xtext.util

7.4. Pivot Thread Safety
OCL is declarative and side effect free and so particularly suitable for execution on multiple threads,
provided all shared context is maintained in ways that avoid inter-thread conflicts.

The classic Ecore-based OCL evaluation makes no attempt to guarantee thread safety and some of the
more recent functionality involving EMF delegate caches is very suspect for multiple thread usage. So
if you want thread safety use the Pivot-based evaluation.

The thread safety of interpreted Pivot evaluation is similarly suspect, however the much faster code
generated evaluation is designed for thread safety.

7.4.1. Code Generated Evaluation
The code-generated evaluator is intended to be thread-safe; all shared objects update their caches within
relatively fine-grained synchronized regions. However there are a number of class static variables that are
not synchronized and might therefore experience at best a redundant multiple initialization and at worst
an assumed uniqueness violation. Thread safe code must therefore invoke:

 org.eclipse.ocl.pivot.utilities.ValueUtil.initAllStatics()

to ensure eager initialization of unsynchronized class variables. This routine is itself synchronized and
so may be safely invoked on all threads, if it is not practical to invoke it solely from just a startup thread.

It is not permissible to modify any part of any OCL object, array or collection.

Application code should not assume that the getter for a protected final field is invoked internally and so
should not attempt to modify behavior by overriding it.

7.4.1.1. Design Notes
Loose miscellaneous static fields are initialized by ValueUtil.initAllStatics().

Most non-static fields are @NonNull and final eliminating thread hazards. However lazy caches cannot
be avoided and these require manual review. Caches shared across OCl invocations use Weak references
to avoid leakage.

ElementIds are unique and shared across OCL evaluations and so IdManager maintains a hierarchy of
synchronized caches for distinct forms of ElementId. Some ElementIds such as TemplateParameterId are
subject to two-phase construction (constructor followed by install). It is assumed that a half-constructed
ElementId will not be made visible to other threads.

Values are optionally shared and so ValueUtil has a few loose statics for simple values such as FALSE,
and a synchronized cache for integers in the range -256 to 1024.

EvaluatorIterationManagers do not currently permit forking of iterations to multiple threads and may
malfunction if application code does so.

7.4.2. Interpreted Evaluation
This is not considered thread-safe. Superficial consideration suggests that the EMF delegate dispatching
in particular needs careful attention.

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 201

7.4.3. OCL Analysis
The Xtext-based functionality is only thread-safe in so far as Xtext imposes strict main/worker thread
disciplines. It is very unlikely that activating additional worker threads will give satisfactory results.

7.5. Parsing Constraints and Queries
This section may be contrasted with the corresponding Parsing Constraints and Queries for the Ecore
binding to see examples of the changes needed to migrate from the Ecore binding to the Pivot binding.

The OCL parser provides two APIs for parsing constraint and query expressions using the OCL Facade.

7.5.1. The OCL Facade
The OCL class provides both a Facade and a Handle for the various objects that support different aspects
of OCL parsing and evaluation.

The OCL class is a simple type.

There is no need for the many template parameters that parameterize the equivalent
OCL class for the Ecore/UML bindings.

Behind the scenes, OCL instances share an EnvironmentFactory that creates and owns the primary
support objects and provides an API to create these and other important artefacts.

The ProjectManager supports the discovery of metamodels to resolve URI references.

• OCL.NO_PROJECTS is a very lightweight ProjectManager supporting access only to those
models known to the external ResourceSet.

• OCL.CLASS_PATH is a heavyweight ProjectManager supporting access to models registered
with plugins on the Java classpath.

The external ResourceSet is a potentially user-supplied ResourceSet to manage the external
metamodels such as Ecore or UML models or Xtext Concrete Syntax models.

The external metamodels are converted to the normalized Pivot representation under control of
the MetamodelManager which maintains the normalized representation in an Abstract Syntax as
ResourceSet.

A merged view of the normalized metamodels is provided by the CompleteModel under control
of the CompleteEnvironment that also supervises a StandardLibrary, TupleManager and
LambdaManager for more specialized aspects of the merge. The CompleteEnvironment API
supports synthesis of Collection and Map types.

Access to the normalized representations from diverse contexts, in particular from generated Java code,
requires an ability to discover the merged representation of e.g. the Boolean type from the minimal
concept of a Boolean type-id. The IdResolver performs the id-to-object conversion.

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/pivot/utilities/OCL.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/pivot/utilities/OCL.html

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 202

When Pivot models are derived from Xtext source text, a Concrete Syntax representation is converted
to the normalized Abstract Syntax. The CS2ASMapping tracks the equivalences in this conversion so
that tooling can reverse the navigation to discover appropriate text to highlight in a source editor for an
underlying model element.

The OCL handle may also reference a ModelManager. This is used to identify objects during evaluation
of operations such as allInstnaces().

7.5.2. OCL Handles
The static factory methods of the OCL class are used to create new instances. These are suitable for suitable
for parsing OCL constraints on any Ecore or UML model and evaluating them on instances of the model.

If you already have models loaded in a ResourceSet, you may activate OCL functionality by creating
a new OCL instance specifying that OCL should exploit that ResourceSet.

[Text for cut and paste]

Alternatively you may leave the OCL instance to create the ResourceSet.

[Text for cut and paste]

It is good practice to invoke dispose() explicitly to release all OCL-related Resource references
promptly rather than rely on garbage collection.

[Text for cut and paste]

When repeated parsing and evaluation occurs on a model, it is very beneficial to re-use rather than re-
create the underyling OCL support objects. This is easily achieved in simple scenarios by re-using the
OCL instance directly. In more complex scenarios the handle behavior of an OCL instance can be exploited
to create multiple handles for diverse usages each of which is disposed when complete. The dispose of
the underlying OCL support occurs when the final handle disposes.

7.5.3. Class Context
Parsing an OCL expression requires a classifier to define the type of self. This is passed to
createInvariant(), which enforces a Boolean result type, or to createQuery(), which allows
any result type.

The result of parsing a query expression or a constraint is an ExpressionInOCL , an instance of the
Abstract Syntax Model.

[Text for cut and paste]

7.5.4. Operation and Property Contexts
In the case of constraints on operations or properties, the context consists of two elements: the constrained
operation/property and a classifier that defines the type of self while parsing the OCL. The classifier
is deduced as the container of the operation or property. These can be constrained as follows:

../references/6310-creating-external.txt
../references/6310-creating-internal.txt
../references/6310-dispose.txt
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/pivot/ExpressionInOCL.html
../references/6310-context.txt

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 203

[Text for cut and paste]

7.5.5. Errors
The preceding examples are simplified by the assumption that there will be no parsing errors. In practice
ParserExceptions should be caught and handled in an appropriate way by the application.

[Text for cut and paste]

7.5.6. The OCL Helper
The Ecore/UML bindings for OCL provide an OCLHelper class to assist in creating
queries. A similar class is available with the Pivot binding for compatibility although
it is largely redundant since the OCL class class be used directly. An OCLHelper will
give a small performance benefit for multiple parses but not as much as direct use of
an underlying ParserContext or a structuring multiple queries in a Complete OCL
document.

From an OCL instance, we can create a helper object with which to parse constraints
and additional operation/attribute definitions.

The OCLHelper is primarily designed for parsing constraints and query expressions
embedded in models, providing the following API for that purpose:

* createQuery(): parses a query expression

* createConstraint(): parses a constraint of a given ConstraintKind

* createInvariant(): convenience for invariant constraints

* createPrecondition(): convenience for pre-condition constraints

* createPostcondition(): convenience for post-condition constraints

* createBodyCondition(): convenience for body conditions

* createDerivedValueExpression(): convenience for attribute derived
values

Different kinds of constraints require different context
environments. The setContext(), setOperationContext(), and
setAttributeContext() methods create the appropriate nested Environment
s in the host OCL instance’s root environment.

The Ecore/UML bindings variously produce a Constraint or OCLExpression
result. A Constraint has too much context and an OCLExpression too little. An
ExpressionInOCL produced by the Pivot binding is just right.

../references/6310-define.txt
../references/6310-errors.txt

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 204

7.6. Evaluating Constraints and Queries
In Parsing Constraints, we saw how to use the OCL Facade to parse a textual OCL constraint or query
expressions to give its ExpressionInOCL compiled representation. Parsing constraints is interesting,
but evaluating them using the Query API is much more useful.

7.6.1. The OCL Query
The Query class wraps the minimal ExpressionInOCL parse result to provide evaluation
capabilities.

The Query encapsulates an EvaluationEnvironment providing the run-time values of context
variables to the OCL interpreter. These context variables are set and retrieved using the following
methods:

• add(TypedElement, Object): adds a TypedElement-to-value binding

• replace(TypedElement, Object): replaces an existing binding

• remove(TypedElement): removes a binding

• getValueOf(TypedElement): obtains a binding value

.bq The Ecore/UML binding of Eclipse OCL used String rather than TypedElement to support name-
to-value bindings. The use of TypedElement rather than String avoids whereby the same name refers to
multiple Variables depending on context. .p

The context variables of primary interest are self and, in operation constraints, the variables
corresponding to its parameters.

An important consideration for OCL evaluation is the allInstances() operation, which obtains the
entire extent of a classifier. For data types, this is a simple problem: the extent of an Enumeration
is well defined and the extents of other kinds of DataTypes are undefined. For Class extents, the
OCL handle references a ModelManager that provides access to the user’s models. The default
PivotModelManager lazily computes the extent of a class from the EMF ResourceSet containing
the context element of the evaluation.

So, after optionally setting values of context variables (other than self; the Query takes care of this)
and an extent map, simply construct a query and use it to evaluate the expression or check the constraint:

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/pivot/utilities/Query.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/pivot/utilities/Query.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/pivot/evaluation/EvaluationEnvironment.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/pivot/evaluation/ModelManager.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/pivot/internal/evaluation/PivotModelManager.html

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 205

[Text for cut and paste]

7.6.2. Object representations
The example above uses evaluateUnboxed() so that the return value is unboxed and so compatible
with the Classic Ecore/UML OCL binding.

The Pivot binding of OCL supports three distinct Java representations.

• boxed for internal use

• unboxed for traditional API compatibility

• Ecore for Ecore API compatibility

OCL Unboxed Ecore Boxed

Boolean Boolean Boolean Boolean

String String String String

Integer Integer/Long/
BigDecimal

Integer/Long/
BigDecimal

IntegerValue

Real Float/Double Float/Double RealValue

Object EObject EObject EObject

Type EClassifier EClassifier TypeValue

null null null null

invalid InvalidValueException InvalidValueException InvalidValueException

Collection Collection EList CollectionValue

Bag Bag EList BagValue

Sequence List EList SequenceValue

OrderedSet OrderedSet EList OrderedSetValue

Set Set EList SetValue

The boxed representation is used wherever the Java semantics of Object.equals(Object) is
different to the OCL semantics of OclAny::_'='(OclAny).

The unboxed representation is used when a similar representation to the Ecore/UML binding is required.

../references/6315-check-all.txt

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 206

The Ecore representation is used for all interchange with Ecore EStructuralFeature values or EOperation
arguments and returns.

7.6.3. Multiple Evaluations
One of the advantages of the Query API is that a query’s evaluation environment can be reused for
multiple evaluations, as above. The extent of any classifier is only computed once. For convenience,
however, in situations where only a single evaluation is required, the OCL class provides shortcuts:

[Text for cut and paste]

7.6.4. Succint Evaluations
The Query API also provides methods that work on multiple elements. The first example, above, could
be written more succinctly as:

[Text for cut and paste]

7.7. Parsing OCL Documents
As we saw in the Parsing Constraints and Queries topic, the OCL Facade provides an API for parsing
OCL expressions embedded in models as constraints.

The OCL specification defines a Complete OCL text document with which a UML (or Ecore) metamodel
may be completed by providing many complementary constraints and expressions. In this case, the
concrete syntax for context declarations indicates the context of constraints, equivalent to their placement
in models.

As an example, consider the following Complete OCL document:

[Text for cut and paste]

7.7.1. The OCL Input
The Pivot binding provides a UML-aligned representation and so a Complete OCL document can be
parsed to provide a similar Resource to that derived from a UML or Ecore metamodel. A Root contains

../references/6315-check-one.txt
../references/6315-check-quick.txt
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/utilities/OCL.html
../references/6320-extlibrary.ocl

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 207

a Model which contains Packages and Classes. The complementing Resource from the Complete
OCL document is independent of the similarly structured complemented Resource of the completed
metamodel.

The Pivot binding uses an Xtext parser with a UML-aligned output. The input text is therefore specified by
a URI and loaded by the Xtext parser to create a Concrete Syntax Resource. This may then be converted to
the Pivot Abstract Syntax Resource. The Abstract Syntax Resource has a conventional Model, Package,
Class, Operation hierarchy in order to provide a coherent composition context for the Constraints.

The elements of the independent complementing and complemented Resources are merged within
CompleteClasses and CompletePackages of the CompleteModel managed behind the OCL
facade.

There are therefore two Class objects named Library, one for each Resource. The objects are distinct
in so far as they belong to different resources, which can be separately serialized, and in so far as they may
appear distinct to OCL expressions that use reflective access. However they are logically merged and
the CompleteEnvironment provides utility methods that allow the multiple objects to be accessed
as a merged object.

The Ecore binding provided an OCLInput class to supervise the OCL source text, and
the result of parsing the document was a List<Constraint>. p.

The Complete OCL document is a textual Resource with an associated text tooling. The OCL facade
provides an API to load a Resource from a given URI.

[Text for cut and paste]

7.7.2. Traversing the Constraints
The parsed resurce can be traversed in the same way as other EMF resources.

[Text for cut and paste]

7.7.3. Accessing the Constraints
The contents of the Complete OCL document contribute to a CompleteModel that merges all the
contributions. The contributions can therefore be used as if defined in a primary metamodel.

../references/6320-parsing.txt
../references/6320-traversing.txt

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 208

[Text for cut and paste]

7.7.4. Using the Constraints to Validate a Model
The standard EMF validation makes use of an EValidatorRegistry that maps the URI of an
EPackage to the derived EValidator that provides the constraints appilcable to the EPackage.
If we want to exploit additional constraints defined in a Complete OCL document, we must extend
the underlying EValidator. The ComposedValidator enables multiple EValidator to be
composed and to behave as a single EValidator. ComposedEValidator.install() replaces
the single EValidator by a composite initially containing just the replaced EValidator. A
CompleteOCLEObjectValidator provides the additional validation of the given uri and
EPackage.

[Text for cut and paste]

The standard Diagnostician does not directly support validation of a Resource.
MyDiagnostician remedies this deficiency and provides a SubstitutionLabelProvider that
provides slightly better labels within OCL diagnostics.

../references/6320-accessing.txt
../references/6320-validating.txt

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 209

[Text for cut and paste]

The source for these examples may be found in the org.eclipse.ocl.examples.xtext.tests
plugin in model/parsingDocumentsExample.ocl and in src/org/eclipse/ocl/examples/test/xtext/
PivotDocumentationExamples.java.

7.8. OCL Relationship to Metamodels
The Pivot-based OCL implementation provides indirect support for models defined using either the
Ecore or the UML metamodel (as implemented by the Eclipse EMF and UML2 projects), and an
extensibility API that allows additional EMF-based metamodels to be plugged in. The indirection
through the UML-aligned Pivot metamodel makes OMG compliance much easier and decouples the
implementationm from particular bindings. Support for an alternate concrete metamodel representation
is therefore comparatively simple.

The OCL API implements support for different target metamodels via the EnvironmentFactory
interface. An implementation of this interface binds the metamodel’s metaclasses to the generic type
parameters of the OCL class. The metamodel-specific Environment implementation constructed by
this factory implements the reflection capability required by OCL to discover the elements of the model
being constrained and the relationships between them.

7.8.1. The Pivot Metamodel Binding
The preliminary OCL binding for the Pivot metamodel has been provided since the Indigo
release by the org.eclipse.ocl.examples.pivot plug-in. This has been promoted to
org.eclipse.ocl.pivot in the Mars release.

The Pivot metamodel prototypes resolutions of the following problems in the OCL 2.4 specification

• UML-alignment

• OCL Standard Library model

• XMI interchange

• Complete OCL implementability

The support for an OCL Standard Library model enables large parts of the OCL specification to be
captured by models. This makes the behavior mutable and extensible through definition of alternate or
extended library models. (The corresponding Ecore and UML bindings have an Ecore representation of
the library but much of its functionality is directly implemented and so immutable.)

../references/6320-diagnostician.txt
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/pivot/utilities/EnvironmentFactory.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/pivot/utilities/OCL.html
http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/examples/pivot/Environment.html

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 210

The Pivot metamodel is auto-generated by a package merge of

• selected parts of the UML metamodel

• additional OCL packages

• implementation-specific packages

The implementation-specific packages provide

• Visitors throughout the entire metamodel (OCL and MOF)

• Ecore extensions

It is anticipated that the performance advantages of a uniform compliant metamodel, without the
complexities of the templates from the org.eclipse.ocl plugin, will outweigh the initial overhead
of converting an Ecore or UML metamodel to Pivot form. Once this has been demonstrated, the direct
Ecore and UML metamodels will be deprecated.

The Pivot binding is provided by the PivotEnvironmentFactory class. For compatibility, as
a default, the Pivot environment uses the static EPackage registry to look up package names. This
default is deprecated since the domain of allInstances() may be very large when many models are
registered. It should therefore be supplied with an alternative package registry (for example, one local
to a ResourceSet) for relevant metamodels. The static registry is then used as a backup for package
lookups, but not for allInstances(). The Pivot environment factory maintains the Pivot models
associated with

• Ecore metamodels in use

• UML metamodels in use

• Library models in use

• Concrete Syntax source models

• OCLinEcore (rather than Ecore)

• Complete OCL

• OCL Standard Library

The Pivot binding for OCL will provide the full capabilities of the UML binding, but at present only
the Ecore facilities have been tested. The Pivot binding has the additional ability to support extensions
to the library.

For applications that work exclusively with the Pivot binding for OCL, the
org.eclipse.ocl.pivot package defines an OCL class that provides similar facilities to the
corresponding Ecore and UML binding equivalents.

The Pivot metamodel is used by Eclipse OCL for:

• all Xtext editors; editing, parsing, analysis and validation

• the Xtext OCL console; editor and evaluation

• EMF delegates using the http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot URI

• explicit use of the Pivot metamodel from Java

The Pivot metamodel is not used by Eclipse OCL for:

• OCL console editing and evaluation

• EMF delegates using the http://www.eclipse.org/emf/2002/Ecore/OCL/LPG URI

• Impact Analyzer.

• explicit use of the Ecore or UML bindings from Java

EMF delegates using the http://www.eclipse.org/emf/2002/Ecore/OCL virtual URI are redirected to
either http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot or http://www.eclipse.org/emf/2002/Ecore/
OCL/LPG by the setting of the “Executor targeted by the default OCL delegate” preference setting, which
defaults to http://www.eclipse.org/emf/2002/Ecore/OCL/LPG for compatibility.

Note that the Indigo and Juno OCLinEcore editor uses the http://www.eclipse.org/emf/2002/Ecore/
OCL/Pivot URI and so uses the Pivot Evaluator, whereas the Helios OCLinEcore editor used
the http://www.eclipse.org/emf/2002/Ecore/OCL URI and so the Ecore evaluator. A file using
the http://www.eclipse.org/emf/2002/Ecore/OCL URI will automatically be upgraded to the http://

http://download.eclipse.org/ocl/javadoc/6.4.0/org/eclipse/ocl/pivot/internal/utilities/PivotEnvironmentFactory.html

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 211

www.eclipse.org/emf/2002/Ecore/OCL/Pivot URI when edited using the Indigo or Juno OCLinEcore
editors.

In Kepler, Luna ans Mars, the OCLinEcore editor preserves any existing delegate URI selection. The new
“Preferred executor requested for OCL constraints” preference determines the URI when no previous
setting is available. This defaults to http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot for backwards
compatibility.

7.9. Ids
The ElementId hierarchy provides the simplest base level of metamodel representation. The ElementIds
feature

• identity

• uniqueness

• thread-safety

• predictability

• hashcodes

Every primary hierachical metamodel object such as a Package, Type, Operation or Property has a
globally unique identity established by the package-class-feature path.

Auxiliary metamodel object such as a TemplateParameter, TuplePart or List-of-Parameter have a locally
unique identity supporting fast matching of tuples or single lookup for operation parameters.

7.9.1. Id Equality
ElementIds are unique, whereas metamodel elements are not; there may be many meta-models in
many applications all with their own Boolean PrimitiveTypeImpl instances. The equivalence of these
elements may be established rapidly since each returns the same TypeId.BOOLEAN singleton from
PrimitiveTypeImpl.getTypeId().

7.9.2. IdManager
Uniqueness of ElementIds is enforced by the various getXxxId methods of the single
IdManager.INSTANCE. These methods are synchronized to ensure thread safety. Child hierarchical
objects are similarly mediated by their parent.

7.9.3. CollectionTypeId
CollectionTypeIds are a degenerate form of specialization/generalization with a single template
parameter. The template parameter is declared explicitly in generalizations.

7.9.4. TupleTypeId
TupleTypes are self-contained, that is all external template parameter references with the part types
are bindings of a specialized tuple type whose generalization replaces those external references by the
template parameters of the generalization.

For instance given a declaration

Set(A)::op(B)() : Tuple(a:A, b:Bag(B), c:B)

Tuple(a:A, b:Bag(B), c:B) is the (A,B) specialization of the Tuple(T1,T2)(a:T1,b:Bag(T2),c:T2)
generalization.

7.9.5. LambdaTypeId
LambdaTypes are self-contained in the same way as tuples with specializations of generalizations.

7.9.6. ParameterIds
A ParameterIds identifies an ordered list of typeid suitable for identifying an operation’s parameter list
by a single object and hashcode.

Unified or Pivot Programmers Guide

Eclipse OCL 2020-06 (6.12.0) 212

A ParameterIds has no knowledge of its parent Operation and so ParameterIds are reused whenever
the typeid list arises. Note that collection typeIds are always collectionTypeIds, so there is no need for
multiplicities. The residual optional existence is not subject to overloading and is ignored in ParameterIds.

LambdaTypes reuse ParameterIds to capture the extended type list comprising the typeids of context-
type, result-type then parameter-types.

7.9.7. TuplePartId
A TuplePartId identifies a part of a Tuple. It has a name, typeid and index. The index is the part position
in the set of parts in a parent tuple alphabetically sorted by name. It provides efficient access to a slot
position in a tuple representation.

A TuplePartId has no knowledge of its parent Tuple and so TuplePartIds are reused whenever the same
combination of name, typeid and index arise.

7.9.8. TemplateParameterId
A TemplateParameterId identifies a template parameter in the ordered list of template parameters
in a parent templateable element. It has just an index in the parent list. For debugging purposes a
TemplateParameterId has a name such as $0 or $1.

A TemplateParameterId has no knowledge of its parent templateable element and so only a couple of
TemplateParameterIds ever exist. Three are statically defined as TypeId.T_1, T_2, T_3.

TemplateParameterId has no knowledge of whether it is a type or value parameter. Pragmatically a
TemplateParameterId extends a TypeId. (This design decision may need revision.)

7.9.9. Code Generation
Since the ElementIds are predictable and unique, code generation can assign them for computation once
in static variables so that large parts of the costs of model elememnt location can be performed at compile
time. At class load time it is only necessary to construct/share the ElementId object. At run-time the
ElementId provides a hashcode to provode rapid lookup.

Eclipse OCL 2020-06 (6.12.0) 213

Chapter 8. API Reference
8.1. Javadoc

The Javadoc for Eclipse OCL 2020-06 (6.12.0) APIs may be found by following the OCL 2020-06
(6.12.0) API Reference link.

8.2. Extension points
There is one extension point, but it is no longer clear that it has any useful functionality. Please consider
it deprecated.

Extension Points Reference.

http://download.eclipse.org/ocl/javadoc/6.12.0/
http://download.eclipse.org/ocl/javadoc/6.12.0/
../references/extension-points/org_eclipse_ocl_environments.html

Eclipse OCL 2020-06 (6.12.0) 214

Chapter 9. Building the OCL Project
This section contains some details on the way in which the OCL project is built. This should only be of
interest to users creating extension of the project.

The interactive build facilities may be found in the org.eclipse.ocl.examples.build plugin. The “Generate
OCL All” launch invokes all the sub-generators for models and editors.

The documentation build uses the “OCL Documentation” Ant external launch; see org.eclipse.ocl.doc/
libs/Readme.txt for prerequisites. The build populates the help/html/manual folders whose content should
be committted to GIT to ensure that the regular build uses the updated documentation. Publishing ocl.pdf
is an option that can be selected when performing a final Jenkins reklease build.

The Javadoc build uses the “Run OCL Javadoc using Ant directly” Ant external launch. The build
populates the javadoc folder which should not be committted to GIT. Generating and publishing the
javadoc is an option that can be selected when performing a final Jenkins release build.

The distribution build facilities uses the Maven pom.xml in the org.eclipse.ocl.releng.tycho plugin. The
“Build OCL Distribution - Nightly” replicates the Jenkins build locally differing only the absence of the
final signing. The build populates the org.eclipse.ocl.releng.build-site plugin

9.1. OOMPH
There is an org.eclipse.ocl.oomph/setups/ocl.setup that users may find helpful to create a development
workspace, but the setup is not used by the developers and so may be stale.

9.2. Maven Central and repo.eclipse.org
Eclipse projects, such as OCL, use Maven in the form of Tycho that adds support for Eclipse working
practices such as the P2 repositories.

There is no official support for provision of releases via Maven centeal and few projects provide it. When
you find an Eclipse projhect on Maven Central be aware that it was probably provided by a well-meaning
but misguided Maven user without knowledge or approval of the Eclipse oroject. It almost certain that
that user will neglect to provide updates and so it is just about guaranteed that what you find is very stale.

Eclipse provides an http://repo.eclipse.org for use by Maven users and some projects publish there.
However there is no standard support for http://repo.eclipse.org and it appears that this approach is going
obsolete. Attempts to offer OCL via http://repo.eclipse.org have foundered.

9.3. Maven and Gradle
Some enthusiastic users have succeeded in using Maven directly and even Gradle. Anyone interested is
recommended to read

Maven and Complete OCL usage

Gradle usage

Further contributions from users are welcome.

9.4. GenModel GenAnnotations
The automated generation of models that form part of the OCL tooling exploits a number of
GenAnnotations to influence the auto-generated code.

9.4.1. http://www.eclipse.org/OCL/GenModel GenAnnotation Source
<genAnnotations source="http://www.eclipse.org/OCL/GenModel">
 <details key="Use Null Annotations" value="true"/>
</genAnnotations>

This GenAnnotation is also used by regular OCL code generation

9.4.1.1. Use Delegates
If the Use Delegates key is present and has a true value genModel will generate code for OCL expressions
that delegates to the run-time interpreter, rather than generating Java code.

https://www.eclipse.org/forums/index.php?t=msg&th=1097672&goto=1826425&#msg_1826425
https://www.eclipse.org/forums/index.php?t=msg&th=1097672&goto=1826395&#msg_1826395

Building the OCL Project

Eclipse OCL 2020-06 (6.12.0) 215

9.4.1.2. Use Null Annotations
If the Use Null Annotations key is present and has a true value the generated code will have @NonNull
and @NonNull annotations.

9.4.2. http://www.eclipse.org/OCL/GenModel/ToString
<genAnnotations source="http://www.eclipse.org/OCL/GenModel/ToString">
 <details key="org.eclipse.ocl.examples.codegen.cgmodel.CGElement"
 value="return <%org.eclipse.ocl.examples.codegen.analyzer.CG2StringVisitor%>.toString(this);"/>
</genAnnotations>

By default EMF generates a toString() method that identifies all attribute values. This cannot be
suppressed, only circumvented.

If the http://www.eclipse.org/OCL/GenModel/ToString GenAnnotation is present the
default is changed to use an inherited implementation, which must be specified somewhere.

Specific implementations of toString may be provided as the values of detail entries whose key is the
qualified name of the interface class. Imports may be encoded with the implementation by enclosing the
fully qualified name in <%...%>.

9.4.3. http://www.eclipse.org/OCL/GenModel/Visitor
<genAnnotations source="http://www.eclipse.org/OCL/GenModel/Visitor">
 <details key="Root Visitor Class" value="org.eclipse.ocl.pivot.util.Visitor"/>
 <details key="Derived Visitor Class" value="org.eclipse.ocl.pivot.util.Visitor"/>
 <details key="Visitable Interface" value="org.eclipse.ocl.pivot.util.Visitable"/>
 <details key="Visitable Classes" value="org.eclipse.ocl.pivot.Element"/>
</genAnnotations>

The accept method for an hierarchical visitor pattern may be woven into the code using the http://
www.eclipse.org/OCL/GenModel/Visitor genAnnotation.

The implementation for class XXXX in the root package is

@Nullable R accept(@NonNull RootVisitorClass<R> visitor) {
 return visitor.visitXXXX(this);
}

The implementation for class XXXX in the derived package is

@Nullable R accept(@NonNull RootVisitorClass<R> visitor) {
 return (R) (DerivedVisitorClass<?>)visitor).visitXXXX(this);
}

The direct cast to the derived type assumes that the caller has ensured that the visitor in use supports the
visitor interfaces for all objects in use.

The null annotations or omitted unless null annotations have been enabled.

9.4.3.1. Root Visitor Class
The fully qualified name of the visitor class must be specified as the value of the Root Visitor Class detail.
This class defines the argument type of the accept method.

9.4.3.2. Derived Visitor Class
The fully qualified name of the derived visitor class must be specified as the value of the Derived Visitor
Class detail. This detail may be omitted for the root package.

9.4.3.3. Visitable Interface
The fully qualified name of the visitable interface must be specified as the value of the Visitable Interface
detail. It’s mandatory for the root package.

9.4.3.4. Visitable Classes
An @Override annotation is generated for all implementations. This leads to an error where the
implementation is not an override. The space-separated fully qualified names of all classes for which the
accpe is not an override must be specified as the value of the Visitable Classes detail.

Building the OCL Project

Eclipse OCL 2020-06 (6.12.0) 216

9.4.3.5. Implementation Details
The support for accept is in templates/model/Class/insert.javajetinc where the
appropriate code is generated into the implementation file with help from OCLBuildGenModelUtil.

9.4.4. http://www.eclipse.org/OCL/GenModel/CopyAndPaste
<genAnnotations source="http://www.eclipse.org/OCL/GenModel/CopyAndPaste">
 <details key="org.eclipse.ocl.xtext.markup.FigureElement"
 value="model/FigureElement.javacopy"/>
</genAnnotations>

EMF allows custom code to be added to classes using an @Generated NOT comment annotation or no
annotation at all. These additions are preserved during regeneration, but may be lost if the file is deleted
and regenerated.

As an alternative, custom contributions may be pasted into class implementation files by specifying a
detail entry whose key is the qualified interface name of the class to be customised and whose value is
the project-relative name of a file providing text to be copied and pasted.

The copied text should be tab indented so that it matches the tab indentation of the auto-generated code.

The copied text may reference types that may need importing by encoding the fully qualified name in
<%...%>.

The customization files are conventionally given a *.copyjava file name and are placed in the model
folder alongside the *.genmodel.

9.4.4.1. Implementation Details
The support for copy and paste is in templates/model/Class/insert.javajetinc where
the referenced text is copied into the implementation file with help from OCLBuildGenModelUtil.

9.4.5. Implementation Details

9.4.5.1. org.eclipse.ocl.examples.build
The org.eclipse.ocl.examples.build plugin hosts the build-time functionality that does not
need to bloat the distribution.

Modified JET templates are in the templates folder which .jetproperties prefixes to the
template path. The .project has an org.eclipse.emf.codegen.jet.IJETNature nature
and builder so that the custom JET templates are automatically built to the jet-gen source folder. The
.project similarly has has an org.eclipse.xtext.ui.shared.xtextNature nature and
builder so that the Xtend templates are automatically built to the xtend-gen source folder. Both these
generated source folders are excluded from source control, since they are 100% auto-generated and they
do not form part of the distribution.

Custom JET templates are declared by OCLBuildGenModelGeneratorAdapterFactory
which creates a OCLBuildGenClassGeneratorAdapter that replaces the normal
reference to org.eclipse.emf.codegen.ecore.templates.model.Class by
org.eclipse.ocl.examples.build.templates.model.Class.

The custom build functionality is installed by the GenModelSetup workflow component,

Eclipse OCL 2020-06 (6.12.0) 217

Appendix A. Glossary
EMF Eclipse Modeling Framework

OCL Object Constraint Language

OMG Object Management Group

QVT Query View Transformation

RTF Revision Task Force

UML Unified Modeling Language

	OCL Documentation
	Table of Contents
	Chapter 1. Overview and Getting Started
	1.1. What is OCL?
	1.2. How Does It Work?
	1.2.1. Editing
	1.2.2. Execution
	1.2.3. Debugging
	1.2.4. Testing

	1.3. Eclipse OCL is Extensible
	1.4. Who Uses OCL and Eclipse OCL?
	1.5. Who is Behind Eclipse OCL?
	1.6. Getting Started

	Chapter 2. Users Guide
	2.1. The two Eclipse OCLs
	2.1.1. The Classic Eclipse OCL metamodels
	2.1.2. The Unified or Pivot Eclipse OCL metamodel
	2.1.3. The transition
	2.1.4. Migration
	2.1.4.1. Language
	2.1.4.2. AS Models
	2.1.4.3. CS Models
	2.1.4.4. The OCL Facade
	2.1.4.5. The OCL Architecture

	2.1.5. APIs
	2.1.5.1. Tool APIs
	2.1.5.2. Internal APIs
	2.1.5.3. Versions

	2.2. The Essential OCL Language
	2.2.1. Syntax
	2.2.1.1. Grammar Implementation
	2.2.1.2. Grammar Approach
	2.2.1.3. OCL Expression
	2.2.1.4. PrimaryExp
	2.2.1.5. SelfExp
	2.2.1.6. PrimitiveLiteralExp
	2.2.1.7. NumberLiteralExp
	2.2.1.8. StringLiteralExp
	2.2.1.9. BooleanLiteralExp
	2.2.1.10. UnlimitedNaturalLiteralExp
	2.2.1.11. InvalidLiteralExp
	2.2.1.12. NullLiteralExp
	2.2.1.13. CollectionLiteralExp
	2.2.1.14. CollectionLiteralPart
	2.2.1.15. TupleLiteralExp
	2.2.1.16. TupleLiteralPart
	2.2.1.17. TypeLiteralExp
	2.2.1.18. NestedExp
	2.2.1.19. IfExp
	2.2.1.20. LetExp
	2.2.1.21. NameExp
	2.2.1.22. IndexExp
	2.2.1.23. NavigatingExp
	2.2.1.24. NavigatingArg
	2.2.1.25. PrefixedExp
	2.2.1.26. InfixedExp
	2.2.1.27. NavigationOperators
	2.2.1.28. TypeExp
	2.2.1.29. TypeNameExp
	2.2.1.30. TypeLiteral
	2.2.1.31. PrimitiveType
	2.2.1.32. CollectionType
	2.2.1.33. TupleType
	2.2.1.34. TuplePart
	2.2.1.35. UnreservedName
	2.2.1.36. UnrestrictedName

	2.3. The OCLinEcore Language
	2.3.1. Syntax
	2.3.1.1. Grammar Implementation
	2.3.1.2. Module
	2.3.1.3. Package
	2.3.1.4. Classifier
	2.3.1.5. DataType
	2.3.1.6. Enumeration
	2.3.1.7. EnumerationLiteral
	2.3.1.8. Class
	2.3.1.9. StructuralFeature
	2.3.1.10. Attribute
	2.3.1.11. Reference
	2.3.1.12. Operation
	2.3.1.13. Parameter
	2.3.1.14. Types
	2.3.1.15. AnnotationElement
	2.3.1.16. Annotation
	2.3.1.17. Detail
	2.3.1.18. Documentation
	2.3.1.19. Constraints
	2.3.1.20. Terminals
	2.3.1.21. Names
	2.3.1.22. Comments

	2.3.2. Limitations

	2.4. The Complete OCL Language
	2.4.1. Syntax
	2.4.1.1. Grammar Implementation
	2.4.1.2. Complete OCL Document
	2.4.1.3. PackageDeclaration
	2.4.1.4. ContextDecl
	2.4.1.5. ClassifierContextDecl
	2.4.1.6. Def
	2.4.1.7. Inv
	2.4.1.8. OperationContextDecl
	2.4.1.9. Parameter
	2.4.1.10. Body
	2.4.1.11. Post
	2.4.1.12. Pre
	2.4.1.13. PropertyContextDecl
	2.4.1.14. Init
	2.4.1.15. Der
	2.4.1.16. Specification
	2.4.1.17. NavigatingExp
	2.4.1.18. NavigationOperators
	2.4.1.19. UnreservedName
	2.4.1.20. UnrestrictedName

	2.5. The OCL Standard Library Language
	2.5.1. Syntax
	2.5.1.1. Grammar Implementation
	2.5.1.2. OCL Standard Library Document
	2.5.1.3. Precedence
	2.5.1.4. Package
	2.5.1.5. Class and Classifier
	2.5.1.6. Inv
	2.5.1.7. Operation
	2.5.1.8. LibOperation
	2.5.1.9. LibIteration
	2.5.1.10. Iterator
	2.5.1.11. Accumulator
	2.5.1.12. Parameter
	2.5.1.13. Pre
	2.5.1.14. Post
	2.5.1.15. LibProperty
	2.5.1.16. Specification

	2.6. Editors
	2.6.1. Syntax coloring
	2.6.2. Validation
	2.6.3. Hover Text
	2.6.4. Content Assist
	2.6.5. Code Templates
	2.6.6. Open Declaration

	2.7. OCL Nature and Builder Auto-Validation
	2.7.1. Configuring the OCL Nature and Builder
	2.7.2. Ecore and UML Auto-Validation
	2.7.3. Building on pre-Photon / 2018 releases

	2.8. Console
	2.8.1. Context Object Selection
	2.8.2. Editing
	2.8.3. Editor Keys
	2.8.4. Results
	2.8.5. Tool Bar
	2.8.5.1. Ecore/UML binding
	2.8.5.2. M1/M2
	2.8.5.3. Clear Console
	2.8.5.4. Close Console
	2.8.5.5. Debug
	2.8.5.6. Load/Save an expression

	2.9. Validity View (new in Luna)
	2.9.1. View Tool Bar
	2.9.1.1. Expand All
	2.9.1.2. Collapse All
	2.9.1.3. Pin
	2.9.1.4. Refresh
	2.9.1.5. Run
	2.9.1.6. Filter
	2.9.1.7. Save
	html
	model
	text

	2.9.2. Model Elements Pane
	2.9.2.1. Model Elements Tool Bar
	Expand All
	Collapse All
	Enable All
	Disable All
	Show/Hide disabled

	2.9.2.2. Text Filter
	2.9.2.3. Model Elements tree
	2.9.2.4. Model Elements Context Menu
	Validate Selection
	Debug Single Enabled Selection
	Show in Editor

	2.9.3. Metamodel Constraints Pane
	2.9.3.1. Metamodel Constraints Tool Bar
	Expand All
	Collapse All
	Enable All
	Disable All
	Show/Hide disabled

	2.9.3.2. Text Filter
	2.9.3.3. Metamodel Constraints tree
	2.9.3.4. Metamodel Constraints Context Menu
	Validate Selection
	Debug Single Enabled Selection
	Show in Editor

	2.9.4. Constraint Locators
	2.9.4.1. org.eclipse.ocl.examples.emf.validation.validity.locator.EClassConstraintLocator
	2.9.4.2. org.eclipse.ocl.examples.emf.validation.validity.locator.EValidatorConstraintLocator
	2.9.4.3. org.eclipse.ocl.examples.validity.locator.DelegateUIConstraintLocator
	2.9.4.4. org.eclipse.ocl.examples.validity.locator.PivotUIConstraintLocator
	2.9.4.5. org.eclipse.ocl.examples.validity.locator.UMLUIConstraintLocator

	2.10. Debugger (new in Luna)
	2.10.1. Launching
	2.10.1.1. Selected model object and manually entered expression
	2.10.1.2. Selected model object/constraint combination
	2.10.1.3. Selected model object and selected constraint

	2.10.2. Stepping
	2.10.2.1. Step Into
	2.10.2.2. Step Over
	2.10.2.3. Step Return
	2.10.2.4. Resume

	2.10.3. Variables View
	2.10.4. Breakpoints View
	2.10.5. Outline View

	2.11. OCL Integration
	2.11.1. OCL execution in Ecore / EMF Delegates
	2.11.2. Custom Validation Messages
	2.11.2.1. Underlying support
	2.11.2.2. Editor syntax

	2.11.3. CompleteOCL Validation
	2.11.3.1. Browse Registered OCL Files...
	2.11.3.2. Browse File System...
	2.11.3.3. Browse Workspace...

	2.11.4. OCLinEcore for Xtext Validation
	2.11.5. Complete OCL for Xtext Validation

	2.12. OCL in UML (using Papyrus)
	2.12.1. UML Integration
	2.12.2. Class Diagram
	2.12.2.1. Class Invariant
	2.12.2.2. Operation Precondition, Postcondition and Body
	2.12.2.3. Property Initializers
	2.12.2.4. Profile Constraint

	2.12.3. State Machine Diagram
	2.12.3.1. Statemachine Constraint
	2.12.3.2. Statemachine Transition Guard

	2.13. OCL Constraint Examples for UML (using Papyrus)
	2.13.1. Model Constraints
	2.13.1.1. Simple Metamodel
	2.13.1.2. Scalar Constraints
	NameIsAlphabetic
	NoSelfPartnership

	2.13.1.3. Collection Constraints
	EachChildHasTwoParents
	AcyclicAncestry
	EachChildsParentsArePartners

	2.13.2. Profile Constraints
	2.13.2.1. Example Profile
	2.13.2.2. Example Profiled Model
	MaleOrFemale
	GenderIsRequired
	CatholicPriestsAreMale
	AtMostOnePriesthood
	->notEmpty()

	2.14. User Interface
	2.14.1. Project Property Pages
	2.14.2. Workspace Preference Pages
	2.14.3. Overall Options
	2.14.3.1. Default Delegation Mode
	http://www.eclipse.org/emf/2002/Ecore/OCL/LPG
	http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot
	http://www.eclipse.org/emf/2002/Ecore/OCL

	2.14.3.2. Code Generation Mode
	Delegate for interpretation at run-time
	Generate Java code in xxxBodies classes

	2.14.4. Ecore and UML Options
	2.14.5. UML Options
	2.14.6. Model Registry
	2.14.7. Syntax Coloring
	2.14.8. Editor Templates
	2.14.9. OCLinEcore Options

	Chapter 3. The OCL Standard Library
	3.1. Precedences
	3.2. Bag(T)
	3.3. Boolean
	3.4. Class
	3.5. Collection(T)
	3.6. Enumeration
	3.7. EnumerationLiteral
	3.8. Integer
	3.9. Map(K, V)
	3.10. OclAny
	3.11. OclComparable
	3.12. OclElement
	3.13. OclEnumeration
	3.14. OclInvalid
	3.15. OclLambda
	3.16. OclMessage
	3.17. OclSelf
	3.18. OclState
	3.19. OclStereotype
	3.20. OclSummable
	3.21. OclTuple
	3.22. OclType
	3.23. OclVoid
	3.24. OrderedCollection(T)
	3.25. OrderedSet(T)
	3.26. Real
	3.27. Sequence(T)
	3.28. Set(T)
	3.29. State
	3.30. String
	3.31. Type
	3.32. UniqueCollection(T)
	3.33. UnlimitedNatural

	Chapter 4. Tutorials
	4.1. OCLinEcore tutorial
	4.1.1. Overview
	4.1.2. References
	4.1.3. Installing the Eclipse OCL Examples
	4.1.4. Troubleshooting
	4.1.5. Using the OCLinEcore text editor for Ecore
	4.1.5.1. Create a New EMF Project
	4.1.5.2. Create a New Ecore Model
	4.1.5.3. Edit Ecore Model as OCLinEcore
	4.1.5.4. The Tutorial Meta-Model

	4.1.6. Create a Dynamic Model Instance
	4.1.7. Enrich the meta-model with OCL
	4.1.8. The OCL Console
	4.1.9. Helper Features and Operations
	4.1.10. Generating Java Code
	4.1.10.1. Java Details
	4.1.10.2. API Invariants

	4.1.11. Summary

	4.2. Complete OCL tutorial
	4.2.1. Overview
	4.2.2. Complete OCL Utility
	4.2.3. Load Complete OCL Tutorial Example Project
	4.2.4. Complete OCL Language Overview
	4.2.4.1. import declarations
	4.2.4.2. package context declaration
	4.2.4.3. classifier context declaration
	4.2.4.4. feature definitions
	4.2.4.5. class invariants
	4.2.4.6. custom messages
	4.2.4.7. operation and property context declarations

	4.2.5. OCL->Load Document Menu Action
	4.2.6. Example Complete OCL complements for Ecore
	4.2.6.1. DerivationIsVolatile
	4.2.6.2. DerivationIsTransient
	4.2.6.3. DerivationIsNotComposed
	4.2.6.4. DerivationWithOppositeHasOppositeDerivation
	4.2.6.5. DerivationIsUninitialized
	4.2.6.6. DerivationDoesNotResolveProxies

	4.2.7. Validating Ecore with additional Complete OCL
	4.2.8. Editing the Complete OCL
	4.2.9. Example Complete OCL complements for UML
	4.2.10. Example Complete OCL complements for Xtext
	4.2.10.1. NoAnonymousImports
	4.2.10.2. NoActions
	4.2.10.3. CamelCaseName
	4.2.10.4. UpperName

	4.2.11. Complete OCL Editor
	4.2.12. Royal and Loyal Example
	4.2.13. Summary

	4.3. Safe navigation tutorial
	4.3.1. Overview
	4.3.2. References
	4.3.3. Evaluation hazards
	4.3.4. Enable Safe Navigation Diagnosis
	4.3.5. Safe Navigation Diagnosis
	4.3.6. Safe Navigation Operators
	4.3.7. Null-free Collections
	4.3.8. Declaring Null-free Collections in Ecore
	4.3.9. Declaring Null-free Collections in UML

	4.4. Code Generation tutorial
	4.4.1. Load OCLinEcore Tutorial Example Project
	4.4.2. Direct code
	4.4.3. Using a GenAnnotation

	4.5. Debugger tutorial
	4.5.1. Load OCLinEcore Tutorial Example Project
	4.5.2. The OCL Debugger
	4.5.3. Very Simple Debug session
	4.5.3.1. Starting the debugger
	4.5.3.2. Exploring Variables
	4.5.3.3. Stepping Execution

	4.5.4. Debugging a Validation failure
	4.5.5. Debugging Complete OCL validation failure
	4.5.6. Console experiments
	4.5.7. Longer range stepping
	4.5.8. Break points

	4.6. Validation tutorial
	4.6.1. Load Complete OCL Tutorial Example Project
	4.6.2. Load Test Model
	4.6.3. EMF Validation
	4.6.3.1. Validity View Validation
	4.6.3.2. Filtering by Root Models
	4.6.3.3. Filtering by Status
	4.6.3.4. Debugging constraints

	4.7. Working with Classic OCL
	4.7.1. Overview
	4.7.2. References
	4.7.3. Parsing OCL Expressions
	4.7.4. Parsing OCL Constraints
	4.7.5. Evaluating OCL Expressions and Constraints
	4.7.6. Implementing Content Assist
	4.7.7. Working with the AST
	4.7.8. Serialization
	4.7.9. Summary

	4.8. Extensions (in the Unified/Pivot OCL prototype)
	4.8.1. Models
	4.8.2. XMI
	4.8.3. Templates
	4.8.4. Extensibility
	4.8.5. Operation Overloading
	4.8.6. Stereotypes
	4.8.7. Safe Navigation
	4.8.8. Reflection
	4.8.9. Lambda Expressions
	4.8.10. Map(K,V)
	4.8.10.1. Details

	4.9. Installing the Eclipse OCL Examples and Editors
	4.9.1. Troubleshooting

	Chapter 5. Examples
	5.1. Royal and Loyal Example Project
	5.2. Empty Example Project
	5.3. OCLinEcore Tutorial Example Project
	5.4. Complete OCL Tutorial Example Project
	5.5. OCL Interpreter Example
	5.5.1. Introduction
	5.5.2. References
	5.5.3. Description
	5.5.4. Support for Ecore and UML Models
	5.5.5. Example Code

	Chapter 6. Classic Ecore/UML Programmers Guide
	6.1. Parsing Constraints and Queries
	6.1.1. The OCL Environment
	6.1.2. Creating an OCL Environment
	6.1.3. The OCL Helper
	6.1.4. Operation and Attribute Contexts

	6.2. Evaluating Constraints and Queries
	6.2.1. The OCL Query

	6.3. Parsing OCL Documents
	6.3.1. The OCL Input
	6.3.2. Accessing the Constraints

	6.4. OCL Relationship to Metamodels
	6.4.1. The Ecore Metamodel Binding
	6.4.2. The UML Metamodel Binding

	6.5. Content Assist Support
	6.5.1. Syntax Completion Choices

	6.6. OCL Abstract Syntax Model
	6.6.1. The Visitable and Visitor Interfaces
	6.6.2. Implementing a Visitor
	6.6.3. The OppositePropertyCallExp Extension

	6.7. Customizing the Environment
	6.7.1. Defining Global Variables
	6.7.2. Defining Helper Operations in Java
	6.7.3. Selecting a Package Lookup Strategy
	6.7.4. Customizing Hidden Opposite Lookup and Navigation

	6.8. OCL Persistence
	6.8.1. The Type Resolver

	6.9. Creating Metamodel Bindings
	6.9.1. The OCL Abstract Syntax Model

	6.10. Incrementally Re-Evaluating OCL Expressions Using the Impact Analyzer
	6.10.1. Using the Impact Analyzer in EMF Editors
	6.10.2. Algorithm Outline
	6.10.3. Impact Analyzer Configuration, Scopes

	6.11. Delegates
	6.11.1. GenModel Settings
	6.11.2. OCL Delegate URIs
	6.11.3. Standalone Initialization
	6.11.4. Invocation Delegates
	6.11.5. Setting Delegates
	6.11.6. Validation Delegates
	6.11.7. Validation Messages
	6.11.8. Query Delegates

	6.12. Ecore/UML Standalone Configuration
	6.12.1. Ecore
	6.12.2. UML
	6.12.3. Classpath
	6.12.4. Xtext Editors

	Chapter 7. Unified or Pivot Programmers Guide
	7.1. Validators
	7.1.1. OCLinEcoreEObjectValidator
	7.1.2. CompleteOCLEObjectValidator

	7.2. The Pivot Evaluator
	7.2.1. The Evolving Pivot Value System
	7.2.2. The Pivot Value System
	7.2.2.1. Value Conversions
	7.2.2.2. Polymorphic Integers
	7.2.2.3. Polymorphic Collections
	7.2.2.4. Polymorphic Objects

	7.2.3. The Pivot Evaluator Type System
	7.2.4. The Pivot Evaluator Implementation System
	7.2.5. Polymorphic Implementations

	7.3. Pivot Standalone Configuration
	7.3.1. Models
	7.3.2. OCL Standard Library
	7.3.3. Pivot Delegates
	7.3.4. Xtext Parsers
	7.3.5. platform:/plugin and platform:/resource URIs
	7.3.6. Classpath

	7.4. Pivot Thread Safety
	7.4.1. Code Generated Evaluation
	7.4.1.1. Design Notes

	7.4.2. Interpreted Evaluation
	7.4.3. OCL Analysis

	7.5. Parsing Constraints and Queries
	7.5.1. The OCL Facade
	7.5.2. OCL Handles
	7.5.3. Class Context
	7.5.4. Operation and Property Contexts
	7.5.5. Errors
	7.5.6. The OCL Helper

	7.6. Evaluating Constraints and Queries
	7.6.1. The OCL Query
	7.6.2. Object representations
	7.6.3. Multiple Evaluations
	7.6.4. Succint Evaluations

	7.7. Parsing OCL Documents
	7.7.1. The OCL Input
	7.7.2. Traversing the Constraints
	7.7.3. Accessing the Constraints
	7.7.4. Using the Constraints to Validate a Model

	7.8. OCL Relationship to Metamodels
	7.8.1. The Pivot Metamodel Binding

	7.9. Ids
	7.9.1. Id Equality
	7.9.2. IdManager
	7.9.3. CollectionTypeId
	7.9.4. TupleTypeId
	7.9.5. LambdaTypeId
	7.9.6. ParameterIds
	7.9.7. TuplePartId
	7.9.8. TemplateParameterId
	7.9.9. Code Generation

	Chapter 8. API Reference
	8.1. Javadoc
	8.2. Extension points

	Chapter 9. Building the OCL Project
	9.1. OOMPH
	9.2. Maven Central and repo.eclipse.org
	9.3. Maven and Gradle
	9.4. GenModel GenAnnotations
	9.4.1. http://www.eclipse.org/OCL/GenModel GenAnnotation Source
	9.4.1.1. Use Delegates
	9.4.1.2. Use Null Annotations

	9.4.2. http://www.eclipse.org/OCL/GenModel/ToString
	9.4.3. http://www.eclipse.org/OCL/GenModel/Visitor
	9.4.3.1. Root Visitor Class
	9.4.3.2. Derived Visitor Class
	9.4.3.3. Visitable Interface
	9.4.3.4. Visitable Classes
	9.4.3.5. Implementation Details

	9.4.4. http://www.eclipse.org/OCL/GenModel/CopyAndPaste
	9.4.4.1. Implementation Details

	9.4.5. Implementation Details
	9.4.5.1. org.eclipse.ocl.examples.build

	Appendix A. Glossary

