OCL Documentation

OCL Documentation

Christian Damus, Adolfo Sanchez-Barbudo
Herrera, Axel Uhl, Edward Willink and contributors

Copyright 2002 - 2014

Eclipse OCL 5.0

1. Overview and GEtting SEArtediiiiiiiiiiiiii e et 1

L1 WHEE IS OCL? ..ttt et e e et e e e 1
1.2, HOW DOES It WOTK? ..ottt ettt et e e e enees 1
L.2.0. EQIfING cereneieiii et 1
1.2.2. EXECULION ...eittieeeett e ettt ettt e e et e ettt e e ettt e e e e et e e e eena e aeees 1
1.2.3. DEDUGGING - eertneetitie ettt ettt ettt e ettt 2
O N =] oo PP PTN 2

1.3. Eclipse OCL iS EXIENSIDIEniiiiii e 2
1.4, Who Uses OCL and EClipSe OCL? ...cuuuiiiiiiiieieei ettt e 2
1.5. Who is Behind ECHIPSE OCL? ...cuuiiiiiiiieieei et 3
1.6, GELLING SEAMEH ...ooee it 3
2. USEIS GUITE ..ot ettt ettt ettt e aaans 5
2.1 The tWO ECHPSE OCLS ...ui ittt ettt e e 5
2.1.1. The Classic Eclipse OCL mMetamodelSoveveieiiiiiiiiiieicei e 5
2.1.2. The Unified or Pivot Eclipse OCL metamodelooveviiiiiiiiiinieiiiieeeeeie, 5
2.1.3. TRE rANSITION ...oeeviieeeiit e e e e eeaans 6

2. L, APLS L 7

2.2. The Essential OCL LANQUAGEcceuuunieetiie ettt ettt e et e e e e e e 7
220 SYNEBX cerieieie ettt e 7

2.3. The OCLINECOIre LanQUEOEceeeriieieiiiie ettt eeeens 17
2,310 SYNEBX ettt enaas 17
2.3.2. LIMITBLIONS ...eeevteeeeii ettt et e 29

2.4. The ComMPlete OCL LANQUAJE ceertneeeeiii e eeeeet ettt e ettt e e e eei e e eat e e eniaeeeee 29
241 SYNEBX ettt et enan s 29

2.5. The OCL Standard Library LangUagecceeuuuiiiiiiiieiiiiiieeeeie e 35
25,00 SYNEBX ettt et 35

PG = [o] £ ST TOPPPTPTUPPPTPRPPPIN 39
2.6.1. SYNLAX COIOMMNG .. .eevrneeeetti ettt et e et e e e et e e et eeeeba s 40
2.6.2. VaAELION ...coeeviieeei e 40
2.6.3. HOVEN TOXE ettt e 40
2.6.4, CONENE ASSISE ... ieeitiiee ettt et e e et e e et et et e e e et e e ent e aees 40
2.6.5. CoUE TEMPIALESeeeiiieeeee et e 41
2.6.6. OPEN DECIAraiONeiiiiiiee et 41

2.7, CONSOIE ..ttt ettt ettt et e a e e e et aae 41
2.7.1. Context ODJeCt SEIECHIONccouuiiiiiiiie e 41
2.7.2. EQITING ..ottt 12
2.7.3. EQITOr KBYS ..ttt 42
274, RESUITS ..o e e e 12
275, TOOI B .o 42

2.8. Validity VIiew (NeW iN LUNG)couuniiiiiiieiiii e 43
2.8.1L VAW TOOI B .iiiiieiiiiii e 43
2.8.2. Model EIeMents Paneoiiiiiiiiiiii e 44
2.8.3. Metamodel COoNSLraintS Panecccuuieiiiiiieiiiie e 46
2.8.4. CONSITAINT LOCAIONS ...cevvteeeeiie ettt ettt et e e e e enaes 47

2.9. Debugger (NEW iN LUNGY ...coovuniiiiiiiee e 48
29,1 LAUNCIING .ttt ettt 48
2.9.2. SEEDPING - eevrneeeett ettt ettt et e ettt e e et e e e ab e aeae 50
2.9.3. Var@hlES VIBW ... 51
2.9.4, BreakpointS VIBWuuiiiiiii et 51
2.9.5. OULIINE VIBIW «.oevieieee e 51

2.10. OCL INEEGIALION ..evtueeeiit ettt ettt e et e e et e e e e eana e eeanes 51
2.10.1. OCL execution in Ecore/ EMF Delegatesoveviiviiieiiiiiiieiiii e 51
2.10.2. Custom Validation MESSAgESuuiiieiiieiiiiii et 51
2.10.3. CompleteOCL Validationccuuueiiiiiaieiiii et 52
2.10.4. OCLinEcore for Xtext Validationccceuiiiiiiiiiiiiiiiieceei e 53
2.10.5. Complete OCL for Xtext Validationccoeeviiiiiiiiiiiieiiiece e 53

2.11. OCL in UML (USING PADYIUS) ..cetunieiiiiieeiiiiie ettt 53
2111 UML INEEQIAION «.eevunieiiiie ettt 53
Eclipse OCL 5.0 ii

OCL Documentation

2.11.2. ClasS DIAQIam ... ceeeii ettt 54
2.11.3. State Maching DIiagramc.cuuuieiiuiiieieii e 58

202, USEN INEEITAGE v 59
2.12.1. Project Property PagBSveeiiiiiieiiii et 59
2.12.2. Workspace PreferenCe PagESuueveiiiieiiei et 59
2.12.3. OVEEll OPLIONSeeeitiieeeeii et 60
2.12.4. Ecore and UML OPLIONSuuiiiiiiieiiiii et 61
2.12.5. UML OPHIONS ...ieetiieeeeti ettt ettt ettt e e e et e e e 62
2.12.6. MOOEl REGISINY ...eeitiieeeeet et 62
2.12.7. SYNtaX COIONNG . .vvueeeiii et e e e e e e 62
2.12.8. EQItOr TEMPIBLES .. .eeieiieeeeii et e e e 62
2.12.9. OCLINECOIE OPLIONS ... eeeeetieeeeiti e ettt e et e et e e et e e e et e e eabe e eeees 63

3. The OCL Standard LibIraryi oot eeees 64
3L PrECROBNCES ...iiiii ittt ettt 64
I = = o | (1) PSP SOPPTRR 64
3.3 BOOI AN e 65
K O - 1 PO UPP PR 66
35, GOl T @CTT ON(T) ettt e e 66
36, ENUIMBT ALT ON oo ettt e e e e e eat e eees 69
37. Enumerati onLi teral oo 69
8. I Mt BT o e 69
3.9, MBE ACH BSS(T) tiitiieiiiii et et ettt 70
310, Ol ANY et 70
311, Ol Conmpar @bl @ oo 71
N 2 © o I = =T 1 (Yo | SO PP TPPPPTPRPPPIN 72
A3, Gl I NVAL T O e e 72
KN A @ o B - o 0T I NPT UPUPTPR PPN 73
N T @ of I Y ST F- Vo PP TPPPPTPUUPPPN 73
BB, Ol Sl e e 73
L7, O] St AL & oot 73
318, Ol SUMTBRDI @ oo e 73
319, Ol TUPL & e e 74
I © of B Y7 o1 PP PPTR PP 74
2L OCl VOI A e 74
322, OrderedCol 1 €Cti ON(T) eiiiiii e e 74
S T © e [g =To ST A (R) TSP UPPPTTR 75
324, REAl 76
IS 1= To [U1=T o [of =T (R 1) PP TUPPPTPRPPPIt 77
K IS 1= A (R 1) PSP SPPPT 78
327, Sl At B et e 79
2 TS O I ¢ o [PPSR PPPPTR 79
22 R 1Y o1 TP 8l
3.30. Uni qUECO!l I €CTT ON(T) cernieiiiii et 81
331 UnlimtedNat ural oo 82
R I U1 (o g = PP PPPPT 83
4.1. OCLINECOrE tULOMI@leevuieeiii ettt enanns 83
A1 1. OVEIVIBIW oottt e e e e et e e 83
A.1.2. REFEIEINCES ...ttt 83
4.1.3. Installing the Eclipse OCL EXaMPIESccoovuniiiiiiiieiiiii e 83
4.1.4. TroUDIESNOOLING ... ceeveeeeeti ettt ettt e e 83
4.1.5. Using the OCLinEcore text editor for ECOre..........ovvviuiiiiiiiiiiiiiii e 84
4.1.6. Create a Dynamic Model INSLANCEccouvirieiiiiiiieiiii e 88
4.1.7. Enrich the meta-model With OCLcooiiiiiiiiiiii e 91
4.1.8. ThE OCL CONSOIE ...cevtieieiiie ettt e e 92
4.1.9. Helper Features and OPerationscceeuuueeeiiineeeeiia et e et e e eeniaeeees 93
4.1.10. Generating JaVa COUEcouuueiiiiii et 96
4101, SUMMEBIY ceeeennieetie ettt et et e et e et et e et et e e et e e e n e eea e ee 100

4.2. COMPIEte OCL TULOITEI «...ueieeieieieiii et e e e eeees 100
Eclipse OCL 5.0 iii

OCL Documentation

A2 1. OVEIVIBIW ..ottt e et et e e e s 100
4.2.2. Complete OCL ULIITY .ooovunieiiiiie e 100
4.2.3. Load Complete OCL Tutorial Example Projectcc.ovveviiiinieiiiiinieieiinnnn, 100
4.2.4. Complete OCL Language OVEIVIEWcc.uuieiiiiiieieiiieeeeeii e 101
4.2.5. OCL->Load Document Menu ACLIONveiieiiieiiiiiiieeeeie e 104
4.2.6. Example Complete OCL complements for ECOrecovveviviiieiiiiinneeiiiinnnn. 106
4.2.7. Validating Ecore with additional Complete OCLccoovviiiiiiiiiiiiiiiieeees 107
4.2.8. Editing the Complete OCLcouuiiiiiiiiieeeii e 108
4.2.9. Example Complete OCL complements for UMLccooiviiiiiiiniiiiiinieeiiinn, 108
4.2.10. Example Complete OCL complements for Xtextc..vveveivinreiiiiinnenennnn. 109
4.2.11. Complete OCL EdItOrcoovuuiiiiiiiieie e 110
4.2.12. Royal and Loyal EXampleoooiiiiiiiiiic e 110
4.2.13. SUMMBIY ...eeeeieeti ettt et et et e et e et et e et et e e e et e e e na e eeaaeee 110

4.3. Code Generation TULOMTAlcccuuuieiiitii et 110
4.3.1. Load OCLinEcore Tutorial Example Projectccovveviiiiieiiiiiiieeiiineeeees 110
A.3.2. DIFECE COUR ...ttt 110
4.3.3. USING @ GENANNOLALIONeieeiiee ettt 111

4.4, DEDUGUES TULOMTAleeetieeeeit ettt ettt e et e et eeae s 111
4.4.1. Load OCLinEcore Tutorial Example Projectc.ovveiiiiiieiiiiiiieciiineeeeee 112
4.4.2. ThE OCL DEDUGOES ...ceevuneeeetiieeeeii ettt e et e e e e e 112
4.4.3. Very SIMmple DEDUQG SESSIONccvvuneiiiiiieieiii ettt 112
4.4.4. Debugging a Validation fallure ... 115
4.4.5. Debugging Complete OCL validation failureccooooiveiiiiniiiiiiniinn, 118
4.4.6. CONSOIE EXPEITMENTS ...ttt ettt e e e e enens 119
4.4.7. LONQGES raNGE SEEPPING ...evvuneeeeiiieeteti e e et e et e ettt 119
4.4.8. Break POINES ...cooviiieiitii ettt et 120

A5, Validation tULOMT@lieieeiie e 120
4.5.1. Load Complete OCL Tutorial Example Projectc.oovveviiiinieiiiiineeiiiinnne, 120
4.5.2. Load TSt MOTE!oieiiieeeee e 120
453 EMF ValatiONcceuniiiiiiiei et 121

4.6. WOrking With ClasSiC OCLccuuuiiiiiieeiiii ettt 123
A.6.1. OVEIVIEIW ..ottt ettt ettt e e e et e e e e e e eee 123
A.6.2. REFEIEICES ...euiiiiii ettt e 123
4.6.3. Parsing OCL EXPreSSIONSccuuuieiiiinieeiiiaee ettt e et e et e et e e 124
4.6.4. Parsing OCL CONSITAINTSuuuiiiiiiieieiii et e e 124
4.6.5. Evaluating OCL Expressions and CONStraintScc.uveveevveinneiiieeineeeieeenn. 125
4.6.6. Implementing Content ASSISEviiiueiieeii e 126
4.6.7. Working With the AST ... e 127
A.6.8. SENTAliZAIION .. .ceeetiieeei e 128
4.6.9. SUMIMEIY ...eneeieiet ettt ettt e e e e e e e e e eees 129

4.7. Installing the Eclipse OCL Examples and EAitOrsoovvviiiiieiiinieiiiiii e 129
4.7.1. TroUDIESNOOLINGeeveieeiii ettt e 131

B EXAMPIES .t e eae 132
5.1. Roya and Loyal EXample ProjeCtoovviiiiiiiiiiic e 132
5.2. Empty EXample PrOJECTuiiiiiiiei e 132
5.3. OCLinEcore Tutorial EXample ProjeCtoiiiiiiiiiiiiiiii e 132
5.4. Complete OCL Tutorial Example ProjJECtuiiiiiiiiiiiiiiieceei e 132
5.5. OCL Interpreter EXAMPIE ...t 132
B5.5. 1 INFOAUCTION .. e e 132
B5.5.2. REFEIEINCES ..ottt 133
5.5.3. DESCITPIION vttt et 133
5.5.4. Support for Ecore and UML MOEISooiiiiiiiiiiiiiic e 134
5.5.5, EXAMPIE COORneiiiiieee ettt 135

6. Classic Ecore/lUML Programmers GUITEveiiuiiiiiiiiieeceie e 136
6.1. Parsing Constraints and QUENTESuiiiiiiieeiiii et et e e e eeni e eees 137
6.1.1. The OCL ENVIFONMENTcouuuiiiiiiieeeeiii ettt 137
6.1.2. Creating an OCL ENVIrONMENEuiiiiieiiiiiiin et 139
B.1.3. The OCL HEIPEN ..ot 139

Eclipse OCL 5.0 iv

OCL Documentation

6.1.4. Operation and Attribute CONEXEScccuvuiiiiiiiieiiii e 141

6.2. Evaluating Constraints and QUETTESccuuuiiiiiiieiiii e 141
B.2.1. TNE OCL QUENY ...ttt ettt ettt e et e e es 141

6.3. Parsing OCL DOCUMENTSuuiiiiiiieieiii ettt ettt ettt e e et e e e 143
6.3.1. THE OCL TNPULeeiti ittt 144
6.3.2. ACCeSSING the CONSIIAINTSuuiiiiiiieeeeii e e 145

6.4. OCL Relationship t0 MetamOdElSuuiiiiiiiiiii e 145
6.4.1. The Ecore Metamodel Bindingc.ooooeuiiiiiiiiii e 146
6.4.2. The UML Metamodel Bindingoveiiiiiiiiiiiici e 147
6.4.3. Syntax Completion ChOICESvciiiiiieiiii e 150

6.5. OCL Abstract SyntaxX MOOElccooeuiiiiiiii e 150
6.5.1. The Visitable and Visitor INterfacesoceevviiieiiiiiiie e 151
6.5.2. Implementing @ ViSItOrcoouuuiiiiiiiiei e 151
6.5.3. The OppositePropertyCallEXp EXIENSIONuieiiiiiiiiiiiiiieciii e 152

6.6. Customizing the ENVIFONMENTiiiiiiiie et 153
6.6.1. Defining Global Variablesoviiiiiiiiii e 153
6.6.2. Defining Helper OperationS in JAVAveviiiiiieiiii e 154
6.6.3. Selecting a Package LOOKUD SIraegYvuueeeeriieiiiiiiieeeiieee et 157
6.6.4. Customizing Hidden Opposite Lookup and Navigationcccceeveeneeennnn. 158

B.7. OCL PEISISIEINCE ..ottt ettt e et e 159
6.7.1. The TYPE RESDIVESoeiiiiii et 159

6.8. Creating Metamodel BindiNgSccouuuiiiiiiiiieiii e 161
6.8.1. The OCL Abstract SyntaX Modelocoviiiiiiiiiiii e 161

6.9. Incrementally Re-Evaluating OCL Expressions Using the Impact Analyzer 163
6.9.1. Using the Impact Analyzer in EMF Editors ... 165
6.9.2. AlOrthm OULHINEo.uiiiiii e 166
6.9.3. Impact Analyzer Configuration, SCOPESueeverruiieiiiiieeeeie e 166

B.10. DEIEGALES ... ettt 166
6.10.1. GENMOE SEHINGSuneeeeeie et 167
6.10.2. OCL Delegate URIScccuuiieiiiiiiei ittt 167
6.10.3. Standalone INItialiZationoveiieiiiieii e 167
6.10.4. INVOCALiON DEIEJALESiieeiiieieii et 167
6.10.5. SEtting DEQJALEScceeiiiieiei e 168
6.10.6. Validation DEIEGAIESccvirtniieiii e 168
6.10.7. Validation MESSAJESccvvuueiiiiii ettt e et ettt et e 168
6.10.8. QUENY DEIEAIEScoiviiiiiii e 169

6.11. Ecore/lUML Standalone Configurationoveeeiuiieiiiiiiieeeii e 169
200 I R o PP 169
B.11.2. UML it e e e e e eanaaa 169
B.11.3. XEEXE EQITOrS .. eeeeiieeiii et 170

7. Unified or Pivot Programmers GUITEioiiiiiiiiiiii ettt e 171
T L VAlTUBIOIS ...t e 172
7.1.1. OCLIiNECOreEOhECtValidatorcccuuuiiieiiieiiii e 172
7.1.2. CompleteOCLEODECtVaAITatorceevviiieeiiiii e 172

7.2. The PIVOt EVAIUBLOTccoiieieiiii e 172
7.2.1. The Evolving Pivot Value SYyStemoooeiviiiiiiiiiee e 173
7.2.2. The PIVOL ValUB SYSIEM ...t 173
7.2.3. The Pivot Evaluator TYpe SYStEMuiiiiiiieiiii e 174
7.2.4. The Pivot Evaluator Implementation Systemcoovveviiieiiiiiniciiineeeeenn, 174
7.2.5. Polymorphic Implementationsooeiiiuiieiiii e 174

7.3. Pivot Standalone ConfiguIationuuieieiueiiiii e 175
T.3.L MOOEIS ..o 175
7.3.2. OCL Standard Libraryooeoeiiiiiiiii e 176
7.3.3. PIVOL DEIEOAIES ... 176
T34, XEEXE PAISEIS ...ttt et 176
7.3.5. platform:/plugin and platform:/resource URIScovveiiiiiiiiiiiiiiieiiee 176
7.3.6. ClassPathlcoeeieiiiie e 177

7.4. PIVOt Thread SAfELYuiiiiiii e 177

Eclipse OCL 5.0 v

OCL Documentation

7.4.1. Code Generated EvalUationcccouiiiiiiiiiiiiiiie e 178
7.4.2. Interpreted EVAIUBLIONiiiiiiiieiiii et 178
T.4.3. OCL ANAIYSIS ..ttt e et e e e e e e ettt e e e e e eeeanaea 178

7.5. Parsing Constraints and QUENTESuiiiiiiieiiiii et e e e e e eeni e 178
7.5.1. The OCL ENVIFONMENTcoouuiiiiiitie ettt e s 178
7.5.2. Creating an OCL ENVIFONMENTuuiiiiiiieiiiii et 179
7.5.3. ThEe OCL HEIPES ... e e e e e eeeees 180
7.5.4. Operation and Attribute CONEXESccouvuiiiiiiiieiei e 180

7.6. Evaluating Constraints and QUETTESccouuuiiiiiiieiiii e eees 181
7.6.1. THE OCL QUETY ...uuniieeeiieeiii et e e et e ettt e e e e e ettt e e e e e e e eeebet e e e eaaeeeees 181

7.7. ParsSing OCL DOCUMENTSuuiiieiiietetii ettt ettt ettt e et e et e e 182
7.7.0. THE OCL INPUL ...ttt e e e e ettt e e e e e e aeeeenens 183
7.7.2. AcCessiNg the CONSIIAINTSuiiiiiieei it 184

7.8. OCL Relationship t0 MetamOdElSuuiiiiiiiieiii e 185
7.8.1. The Pivot Metamodel Bindingc...viiiiiiiiiiiiieec e 185
T.8.2. 1A BEQUALTLY ... 186
AT Lo [=T o= T 187
7.8.4. ColleCtioNTYPEIT ...ooviiiiii e 187
7.8.5. TUPIETYPEIT ..o e 187
7.8.6. LambdaTypeldooeiiiiieii e 187
7.8.7. Parameterlascooeiiiii et 187
7.8.8. TUPIEPAITIA ... oo e 187
7.8.9. TemplateParameterdoooeeiiiiiii e 187
7.8.10. COUE GENEIBLIONeeieti ettt ettt e et et e e e e e e 187

8. APL REFEIBNCE ...ee et 189
8.1, JAVAHOC ettt e e ettt e e e e e e eaeaaaa s 189
8.2, EXIENSION POIMES ... eeetiee ettt ettt ettt ettt e e et e e e et eeeeaa s 189
9. BUIlAiNG the OCL PrOJECE ..uuiiiiiiiieeeei e 190
9.1. GenModel GENANNOLALIONSuuiieiiiii ettt et e e et e e e e e e eai e eees 190
9.1.1. http://www.eclipse.org/OCL/GenModel GenAnnotation Source 190
9.1.2. http://www.eclipse.org/OCL/GenModel/TOSEIINGovevneveeieiiieeii e 190
9.1.3. http://www.eclipse.org/OCL/GenModel/ViSitorovveviiiiiiiiiiiiiieeeee, 190
9.1.4. http://www.eclipse.org/OCL/GenMaodel/CopyAndPasteccoeveevneeennnnnen. 191

9.1.5. Implementation DEailSc.uuieiiiiiiiiii e 191

0.2, A S 3 i et e e et e ettt e e e e e eeeaaaan 192
F N €] o= PP OPPPTTRPPPIN 193

Eclipse OCL 5.0 Vi

Chapter 1. Overview and Getting
Started

For a quick demonstration of OCL enrichment of an Ecore meta-model with computed constraints go
to Getting Started.
A PDF version of this documentation is available at OCL 5.0.0 Documentation.

1.1. What is OCL?

* EMF is Modeled Sructure

The Eclipse Modeling Framework (EMF) supports the definition of structural meta-models and the
subsequent use of models conforming to these meta-models. EMF also supports generating of Java code
to represent the meta-models. Additional Java code can be provided to add behavior to the structural
meta-models.

* OCL is EMF and Modeled Behavior

OCL provides a modeling language that allows the behavior to be embedded within the structural meta-
models or provided as a complement to those meta-models. As a modeling language, OCL understands
the models and so OCL code is much more compact than the equivalent Java. OCL code can be statically
checked, whereas the corresponding Java code often uses reflection and so cannot be checked.

Eclipse OCL isanimplementation of the OMG OCL 2.4 specification for use with Ecore and UML meta-
models.

1.2. How Does It Work?

OCL isaprogramming language, so you will want to edit it, execute it and debug it.

1.2.1. Editing

Eclipse OCL supports entry of semantically checked OCL expressions
» embedded within Ecore using the OCL inEcore editor
» as complementary documents using the Complete OCL editor

* interactive entry and evaluation using the Interactive OCL console.

» programmatic entry and evaluation using the Java AP

EMF supports entry of unchecked OCL

» embedded within Ecore using the Sample Ecore Editor properties view

Eclipse UML supports entry of unchecked OCL

» embedded within UML OpagueExpressions using the UML Model Editor properties view
Papyrus supports entry of semantically checked OCL expressions

» embedded within UML OpagueExpressions using the Essential OCL editor

1.2.2. Execution
Eclipse OCL supports OCL execution
« interactive entry and evaluation using the Interactive OCL console.
» programmatic entry and evaluation using the Java AP
EMF support for generated models enables OCL execution of
* constraints, operation bodies and property initializers using the Java AP
EMF support for dynamic models enables OCL execution of
 constraints using the Validation Delegate API

Eclipse OCL 5.0 1

http://download.eclipse.org/ocl/doc/5.0.0/ocl.pdf

Overview and Getting Started

* operation bodies using the Invocation Delegate API
* property initializers using the Setting Delegate API

* queries using the Query Delegate API

All OCL execution isnormally interpreted and starts from the OCL source text (Concrete Syntax). There
is therefore afirst time parsing overhead to create the compiled form (Abstract Syntax). The compiled
formis cached to avoid repeated parsing costs.

Altenatively the direct Java code generator may be used as described in the Code Generator Tutorial.

1.2.3. Debugging

Since OCL is used embedded in a larger environment, debugging is not easy to provide for OCL in
isolation. The OCL debugger provides a variety of launch mechanisms that enable re-use of model
element and/or constraint selections.

Alternatively the following approaches may be useful within other toosl
« usethe hover-text in the semantic editor to understand the expression types
* usethe quick-fixesin the semantic editor for possible corrections
« if the same fix is suggested more than once, try restarting the editor
* usethe completion assist in the semantic editor for possible syntaxes
* useintermediate invariants to check partial results
« usethe optional explanation messages for an invariant to provide a 'printf’'
 usethe Interactive OCL console to practice a problematic expression on a model

1.2.4. Testing
Once again, since OCL isused embedded in alarger environment, testing is not easy to provide for OCL
in isolation. The following approaches may be useful.
* usethe Interactive OCL console to practice sub-expressions of a problematic expression on a model

The Eclipse OCL development uses an extended JUnit framework that allows the Eclipse OCL code to
be tested by assertions such as:

assertQuerylnvalid(null, "let b : Boolean = null in true and b");

assert QeryResul ts(null, "Set{'b"}", "Set{'a', '"b'", 'c'} - Set{'c', "a'}");
(The null first argument may be a context object.)

See the org.eclipse.ocl.examples.xtext.tests plugin for further details.

1.3. Eclipse OCL is Extensible

The Classic Eclipse OCL is used as a component in a variety of other Eclipse projects such as Acceleo,
BIRT, GMF, Modisco, QVTo. Ecore models are used directly, which leads to some internal difficulties.

A new Unified Eclipse OCL is evolving that exploits Xtext and uses Ecore models indirectly via a
UML-aligned Pivot models. This provides a choice between the classic APIs that offer limited forward
functionality, and the experimental new APIsthat will be promoted to non-experimental forminthe Mars
release.

The new code already offers a fully modeled Standard Library that can be extended or replaced. The
new OCL grammars are extended internally from Essential OCL to OCLinEcore or Complete OCL,
and externally to QVT Core and QVT Relational. The associated Concrete Syntax to Abstract Syntax
mapping is not yet model-driven and so harder to extend.

Full model-driven extensibility is planned for the Mars rel ease.

1.4. Who Uses OCL and Eclipse OCL?

The OCL specification is defined by the OMG. It originally evolved as part of UML whereit is used for
the detailed mathematical aspectsthat are not appropriate for graphical exposition. OCL 2.0 was split off
from UML 2.0 in recognition of its greater utility.

Eclipse OCL 5.0 2

Overview and Getting Started

Within the OMG context, OCL has been re-used as the foundation for the MOFM2T(Model to Text)
Model-to-Text transformation language and the QVT Model-to-Model transformation language. Eclipse
implementations of these are available as the Acceleo and QVT Operational projects.

Eclipse OCL is an implementation of the OCL specification for use in conjunction with EMF and in
particular Ecore and UML2 meta-models. As the behavioral extension for EMF, Eclipse OCL can be
used wherever EMF can.

As a specification language, OCL is frequently used when the behavior of modelsisformally specified.

The use of OCL as an execution language has been hindered by the quality of tool support. Beyond the
research domain, many usages have been proprietary. One advanced proprietary usage at SAP has been
contributed to Eclipse OCL and is available as the Impact Analyzer. This supports strategic planning of
run-time notifications so that derived model properties can be updated efficiently in response to a change
to amodel. Thousand-fold speed improvements are achievable on large models using OCL rather than
Java because OCL has aformal model-based semantics that is amenable to anaysis.

The use of OCL in genera is eased by the provision of good editors exploiting Xtext to provide
comprehensive semantic feedback in afamiliar editing style.

Theuseof OCL for execution isenhanced by providing direct Java code generation for OCL embeddedin
models. This should alleviate many of the performance concerns for interpreted execution of embedded
OCL.

Debugging of OCL execution is now possible using the OCL debugger and the OCL Console can be
used for OCL experimentation.

1.5. Who is Behind Eclipse OCL?

Eclipse OCL is an Open Source project. The original code for OCL 1.x was contributed by IBM. It has
evolved to support OCL 2.x under the auspices of Eclipse.

Thereisnow asignificant personnel and corporate overlap between the Eclipse OCL committers and the
OMG OCL RTF and so Eclipse OCL is pioneering solutionsto many of the under-specification problems
in the OCL specification.

Y ou can expect future changesin OMG OCL to have an implementation in Eclipse OCL to demonstrate
their viability. It is likely that the next version of the OCL specification will use Eclipse OCL and
M2T(Model to Text) tooling to eliminate inconsistencies. Eclipse OCL is currently in use to check that
the OCL used inthe UML 2.5 specification is syntactically and semantically correct.

Direct tooling of the UML 2.5 and OCL 2.5 specifications for the Mars Eclipse release may demonstrate
that the OCL aspects of the specificationsis also functionally consistent.

1.6. Getting Started

For avery quick demonstration of OCL, you may follow thisvery abbreviated version of the OCLinEcore
tutorial, where you can find Installation instructions. Once you have the OCL Examples and Editors
feature installed you may follow these instructions to get an insight into the capabilities of OCL and the
Eclipse OCL tooling.

Invoke File->New->Project... then select Examples then OCL (Object Constraint Language)
Plugins then OCLinEcore Tutorial and Finish to create a smal example project called
or g.eclipse.ocl.examples.project.oclinecor etutorial. It contains

» model/Tutorial.ecore- asmall Library meta-model
» model/Tutorial.xmi - an even smaller Library model
» model/Tutorial.genmodel - agebnerator for Java code

Select model/Tutorial.ecor e and use theright button to invoke Open With->OCLinEcoreEditor. This
givesyou atextual view of the Ecore file with embedded OCL invariants such as the Book constraint

i nvariant Suffi ci ent Copi es:
l'ibrary.| oans->sel ect ((book = self))->size() <= copies;

Thisinvariant is named SufficientCopies. It
* navigates from theimplicit self (a Book)

Eclipse OCL 5.0 3

Overview and Getting Started

 viathelibrary
* toitsloanswhich it searches
* to select those loans that satisfy the predicate
« loaned book is equal to the self Book
* the size (number) of loansis computed
 and compared to the number of copies of the self Book

Theinvariant is satisfied if it evaluatestrue; i.e. if the number of loansislessthan or equal to the number
of copies.

Y ou can seethisinvariant at work, by selecting model/T utorial.xmi and using the right button to invoke
Open With->Sample Reflective Ecore M odel Editor. This gives you a tree view of a small library
model.

Expand the root element and then select the Library lib element and use the right button menu to invoke
Validate. Y ou should get a pop-up reporting problems during Validation. Click Details and you will see
that one of the problemsiswith the SufficientCopiesinvariant we have just looked at. If you browse the
Properties View for model/Tutorial.xmi, you can verify that there are three loans but only two copies
for the offending Book.

You may evaluate custom OCL queries interactively. From the editor for Tutorial.xmi, invoke OCL -
>Show Xtext OCL Console from the context menu. Select Book b2 in the editor, then in the bottom
line of the console enter the OCL expression loans.member and then Enter. The results are shown in the
panel and identify that all three loans are by Member m3.

The expression loansmember is an abbreviated form of self.loans->collect(aLoan : Loan |
al oan.member) and demonstrates OCL’ s ability to perform many useful navigations over multi-element
properties. The expression

 navigates from self, the Book b2 selection
* toitsloans, using Book::loans which is a derived property defined in OCL
« for each of the loans, the iterator variable, al oan, is assigned to the loan and
« the body, al. oan.member is evaluated to return the member making the loan
* theresulting members are collected to return a collection result
* theresult is displayed on three lines in the results panel

Y ou can step through execution using the OCL debugger. In the Console View type PageUp to restore
the earlier text entry, then with Book b2 still selected in the editor, click the debug icon in the Console
tool bar. The debugger should open automatically, but if it doesn’t, use Window->Show View->Debug
from the Eclipse menu bar. The Variables View shows model elemnt values. Click F5 or Step Into afew
times to progress execution.

Y ou have now seen

» an Xtext editor that embeds OCL directly in Ecore modelsto provide programmed enrichment
 execution of OCL while validating a model using conventional Ecore tooling

* aninteractive Console for custom OCL evaluations

* execution of aderived property defined in OCL

« the ability of OCL to express operations on multi-elements compactly

* the ability to debug OCL execution and browse data

Y ou have not

 written any Java code

 generated any plugins

* needed to start an additional Eclipse session

Please follow the tutorials, examples and reference material for further information.

Eclipse OCL 5.0 4

Chapter 2. Users Guide

The core functionality of OCL that supports expressions over models is called the Essential OCL. This
language is of very limited use by itself since there is no way in which the models can be provided.
Essential OCL istherefore extended in various ways to provide this missing context.

The Complete OCL provides alanguage for a document in which OCL complements an existing meta-
model with invariants, and additional features.

OCLinEcore embeds OCL within the annotations of an Ecore mode! to enrich that mode!.

UML supportstheuseof OCL constraintsasaform of OpagueExpression, and UML toolssuch asPapyrus
support those constraints for UML models.

The Eclipse OCL project provides four OCL languages to support these usages.
» Essential OCL provides the core extensible capability of specifying expressions for models.

» Complete OCL providesthe ability to use OCL in a self-standing document to complement an existing
meta-model with invariants, and additional features.

» OCLinEcoreenablesOCL to be embedded within an Ecore meta-model to add invariantsfor classifiers,
bodies for operations and computed values for properties.

» OCLstdlib supports the definition of the standard and custom OCL Standard Libraries.

2.1. The two Eclipse OCLs

The Eclipse OCL project is making atransition to a new underlying infrastructure.

2.1.1. The Classic Eclipse OCL metamodels

The Classic code base emphasized utility for Java programmers. It originally supported Ecore meta-
models and evolved to support UML as well. An OCL Console was added to support interactive
experimentation with OCL expressions.

Interactions with the QVTd project resulted in a refactoring of the grammars so that they could be
extended for use by QVT. At the same time the grammars were migrated to use LPG 2.

The dual support for Ecore and UML was achieved by a shared generic meta-model in which the
distinctions between Ecore and UML meta-models were accommodated by substantial (often ten
parameter) template parameterslists. Sometimestheselists are hidden by derived bindings, but sometimes
the full lists are exposed. This gives rather cumbersome Java code for the OCL developers and OCL
consumers alike.

The classic evaluator is tightly coupled to Ecore which might appear efficient, but the lack of separation
of OCL-specification semantics from Java-implementation semantics makes accurate implementation of
equality in nested collections hard to achieve.

The classic code endeavored to comply with OCL specification despite significant ambiguities in the
specification, but since the classic code evolved from an OCL 1.x compliance and Ecore utility there are
anumber of areas where accurate OMG complianceis hard to achieve.

The classic code is provided primarily by the following plugins
* org.eclipse.ocl

* org.eclipse.ocl.ecore

* org.eclipse.ocl.uml

2.1.2. The Unified or Pivot Eclipse OCL metamodel

The Unified or Pivot metamodel is a prototype for a resolution of a number of fundamental problems
with the OCL 2.4 specification. The Pivot metamodel is derived from the UML metamodels for UML
and OCL to provide a unified metamodel for UML with executable semantics.

In practice, when using the Pivot metamodel for Ecore or UML metamodels, a Pivot metamodel instance
is created on the fly to provide the unified merged OCL functionality for the Ecore or UML metamodel
instances.

Eclipse OCL 5.0 S)

Users Guide

From the specification perspective, the Pivot metamodel

* isUML-aligned

* supports modeling of the OCL standard library

 supports ‘merging’ of additional Complete OCL definitions

* supports an interchangeable XM representation

* supports afully reflective ocl Type()

From the Eclipse perspective, the Pivot metamodel

* hides Ecore differences with respect to EMOF

hides MDT/UML 2 differences with respect to UML

« alows much of the semantics to be defined by asingle library model

« alows user extension and replacement of the library model
 alowsfor exact OMG compliance

At the same time, the Values package that forms part of the specification has been implemented. This
allows a clear separation of OCL-semantics, and although the extra object apparently wrapping each
value might appear to incur overheads, we expect to streamline this so that the new structure is accurate
and faster.

The unified code is provided primarily by plugins that share the prefix
* org.eclipse.ocl.examples

2.1.3. The transition

Thistransition started in the Helios (3.0) release for which Xtext editors were provided for OCLinEcore,
Complete OCL and the OCL Standard Library. There was then no Pivot meta-model and so the editors
offered only syntactic validation. It was not possible to persist an AST as XMI or to evaluate code that
had been parsed by the Xtext parsers. It was necessary to re-parse with the LPG parsers.

In the Indigo (3.1) release, the Pivot metamodel prototype was introduced and used to support semantic
validation within the Xtext editors. The OCL Standard Library was realised using the Pivot metamodel
and anew highly extensible evaluator was implemented. These facilities are used by the new OCL Xtext
Console.

Therefore when using the OCL Xtext Console the contributing tools are
» Essential OCL Xtext editor

* Pivot MetaM odel

e OCL-2.5.oclstdlib library

* Pivot Evaluator

 Pivot Debugger

When using the classic OCL Console the contributing tools are
» LPG parser and hand-coded Syntax Helper

 Ecore (or UML) metamodel bindings

» Hand coded library implementation

¢ Classic evaluator

Since these tools are different there may be occasions where the increased OMG compliance of the Pivot
metamodel gives different behavior to the classic metamodels.

In the Juno (3.2/4.0) release, there is a preliminary Java code generator for the Pivot metamodel so that
al the parsing overheads and significant parts of the execution overheads of OCL embedded in Ecore
models occurs at genmodel time rather than during execution.

In the Kepler (3.3/4.1) release, the code generator was substantially improved and a number of internal
APIs have evolved accordingly. UML support was improved to facilitate usage within Papyrus, and
extensibility was improved for use by QVTd.

Inthe Luna (3.4/5.0) release, further code generation improvements have been made and major new User
Interface capabilities added. Thereis at last an OCL debugger and a Constraint Validity View.

Eclipse OCL 5.0 6

Users Guide

In the Mars (1.0/6.0) release, the transition should be complete and many org.eclipse.ocl.examples.*
plugins will be renamed to org.eclipse.ocl.*. All functionality should use the new Pivot metamodel by
default. However the classic Ecore and UML support will remain for compatibility.

2.1.4. APIs
Eclipse OCL has two different styles of APIs

2.1.4.1. Tool APIs

The major tool APIs originaly provided by the org.eclipse.ocl.OCL class have evolved only
dlightly to org.eclipse.ocl.ecore. OCL and org.eclipse.ocl.uml.OCL for the classic metamodels and
org.eclipse.ocl.examples.pivot.OCL for the Pivot metamodel.

These APIs support the use of OCL as atool to parse and evaluate constraints and queries.

These APIs will change very little; just the package changes according to the chosen metamodel
representation.

2.1.4.2. Internal APIs

Theinternal parsing APIswere made public in 1.3.0 to support parser extension by QVT. These APIsare
very tightly coupled to a particular L PG implementation of a particular OCL grammar formulation. It is
extremely difficult to replicate these APIsfor the ANTLR grammar that underlies the Xtext editors. Itis
also doubtful whether these APIs can be preserved as the OCL specification is clarified to more clearly
specify what words are reserved and what is extensible.

It is therefore unlikely that the internal APIs for the classic metamodels will be replicated for the Pivot
metamodel. However since an LPG grammar is significantly (ten-times) smaller and perhaps a bit faster
(two-times) it isplanned to provide an automated Xtext to L PG trandl ation so that asmaller LPG grammar
can populate the same auto-generated Concrete Syntax structures asthe ANTLR grammar.

This functionality is intended to form part of a new grammar extension API that will enable OCL-
extending languages such as QVT to re-use and extend not only the grammar but also all the semantic
scope resolution and concrete to abstract syntax mappings.

2.1.4.3. Versions

Eclipse version numbering policy requires that a major version change occurs when any re-exported
component has amajor version number change. Consequently when Eclipse UML moved from to UML
2.4 support (4.0.0) and again to UML 2.5 (5.0.0) a corresponding chnage was forced on the Classic
UML support and this is the number that then applies to the whole of Eclipse OCL. However the
Ecore dependencies are unchanged and so Ecore dependent releases have advanced more slowly; 3.2
accompanying 4.0 and now 3.4 accompanying 5.0.

Thisis probably just as confusing for the devel opers as for consumers. It is however necessary to ensure
that the minor changesin the Classic Ecorefunctionality are not presented asmajor changesto consumers.

2.2. The Essential OCL Language
The core functionality of OCL that supports expressions over models is called the Essential OCL. This
language is of very limited use by itself since there is no way in which the models can be provided.
Essential OCL is extended in various ways to provide this missing context.

The Complete OCL provides alanguage for a document in which OCL complements an existing meta-
model with invariants, and additional features. Complete OCL is part of the OMG OCL specification.

OCLinEcore embeds OCL within the annotations of an Ecore model to enrich that model. OCLinEcore
is defined an Eclipse OCL. It is not part of the OMG OCL specification.

UML supportstheuseof OCL constraintsasaform of OpagueExpression, and UML tools such asPapyrus
support those constraints for UML models.

2.2.1. Syntax

The Eclipse OCL realization of the Essential OCL grammar is provided in the following subsections,
starting with the expression terms and then elaborating the operators.

Eclipse OCL 5.0 7

Users Guide

2.2.1.1. Grammar Implementation
The grammar used by the Xtext editors may be found at:
/srclorgleclipse/ocl/examples/xtext/essential ocl/Essential OCL .xtext
in the org.eclipse.ocl.examples.xtext.essential ocl plugin.

2.2.1.2. Grammar Approach

The OCL 2.4 grammar is ambiguous and consequently has disambigating rules. How those
disambiguating rules are applied is an implementation detail.

The disambiguating approach taken in Eclipse OCL is to parse an unambiguous larger language that
unifies al the ambiguities. Subsequent semantic validation distinguishes between the ambiguities and
diagnoses expressions from the larger language that are not valid OCL expressions.

From atechnical point of view this makesthe grammar simpler and more regular, and the implementation
more modular and configurable by the library model.

From a user’s point of view, slightly wrong expressions may be syntactically valid and so semantic
validation may produce a more helpful diagnostic. However completion assist may offer illegal
expressions from the larger language.

2.2.1.3. OCL Expression

The Exp syntax defines an OCL expression.

Expressions consist of avariety of operators and expression terms that are defined at the top level by an
InfixedExp. Wewill first define the terms of an expression and then define the various forms of operators
that bind expression terms together.

2.2.1.4. PrimaryExp
The PrimaryExp syntax identifies the basic building blocks of an OCL expression.

PrimaryExpC5S

i

Literals such as

» PrimitivelLiteral ExpCS-t r ue or 3. 14159

o CollectionLiteral ExpCS- Set { 1. . 5}

» TuplelLitera ExpCS- Tupl e{ name: String="nme',at: String='here')

e Typelitera ExpCS- | nt eger or Set <I nt eger >
The context object
» SAfExpCS-sel f

Compound expressions such as
» NestedExpCS - (x)

Eclipse OCL 5.0 8

Users Guide

o IfEXpCS-if x then y else z endif

o LetEXxpCS-let x : Integer in x + X

Navigation expressions such as

* NavigatingExpCS-x orx. Y::z->i terate(a: | nteger; acc: | nteger|acc+a)

2.2.1.5. SelfExp
The SelfExp syntax supports the use of the prevailing context object in an expression.

SelfExpCs

2.2.1.6. PrimitiveLiteralExp
The PrimitiveLiteral Exp syntax supports the use of aknown value in an expression.

PrimitiveLiteralExpCs —

i

The value may be

* NumberLitera ExpCS- 4 or 3. 14159
» StringLitera ExpCS-' a string'

» BooleanLitera ExpCS-true orf al se
» UnlimitedNaturalLiteral ExpCS - *
 InvaidLiteral ExpCS-i nval i d

* NullLiteral EXpCS - nul |

2.2.1.7. NumberLiteralExp
The NumberLiteral Exp syntax supports the use of a numeric value in an expression.

MumberLiteralExpCs -

MUMBER._LITERAL

A numeric valueis

* aninteger suchas4

« fixed point number suchas 3. 1

« floating point number suchas12. 8e- 5.

A numeric value does not have a leading - ; negative numbers are parsed as the application of a unary
negate operator to a positive number.

A numeric value may not have atrailing decimal point.
A numeric value may not have aredundant leading zero.

2.2.1.8. StringLiteralExp
The StringLiteral Exp syntax supports the use of a string value in an expression.

Eclipse OCL 5.0 9

Users Guide

StringlLiteralExpCS @

A string is specified as a character sequence between single quotes.
eg.' This is a string'

The standard Java and C backslash escapes can be used for awkward characters such as a single quote.
\ b -- #x08: backspace BS

\'t -- #x09: horizontal tab HT

\ n -- #x0a linefeed LF

\ f -- #x0c: form feed FF

\ r -- #x0d: carriage return CR

\'" -- #x22: double quote "

\'' - #x27: single quote’

\'\ -- #x5c: backdlash\

\ X Hex Hex -- #x00 to #xFF

\ u Hex Hex Hex Hex -- #x0000 to #xFFFF

2.2.1.9. BooleanLiteralExp
The BooleanLitera Exp syntax supports the use of boolean values in an expression.

BooleanLiteralExpC3 H
-fa

lse
The Boolean valuesaret r ue and f al se.

2.2.1.10. UnlimitedNaturalLiteralExp

The UnlimitedNaturalLiteralExp syntax supports the use of the non-numeric unlimited value in an
expression.

UnlimitediaturalLiteralExpCs ~E|~

The Non-numeric unlimited valueis* . Other UnlimitedNatural values are NumberLiteral ExpCS.

2.2.1.11. InvalidLiteralExp
The InvalidLiteral Exp syntax supports the use of an invalid value in an expression.

InvalidLiteralExpCs

Theinvalid valueisi nval i d.

2.2.1.12. NullLiteralExp
The NullLiteral Exp syntax supports the use of anull or unspecified value in an expression.

MullLiteralExpCs —@—

Thenull valueisnul | .

2.2.1.13. CollectionLiteralExp
The CollectionLiteral Exp syntax supports the creation of a collection of values for usein an expression.

CollectionLiteralExpCs

Eclipse OCL 5.0 10

Users Guide

A collection literal comprises the CallectionType followed by braces enclosing a comma-separated list
of zero or more CollectionL iteral Parts.

e.g. Sequence{ 1, 2, 4. . 6}

Note that null, collection and tuple values are permitted in collections but that invalid values are not. A
collection ‘containing’ an invalid valueis flattened to the invalid value.

2.2.1.14. CollectionLiteralPart

The CollectionLiteral Part syntax supports the use of avalue or range of valuesin a collection of values.

CollectionLiteralPartCs .—E}

A single item collection literal part may be any expression (except invalid). e.g. 1+2

A multi-item collection literal part comprises the inclusive range of values between two integer limits.
1. . 3isthethreevalues, 2, 3.

1..-1isthethreevalues1,0, - 1.

2.2.1.15. TupleLiteralExp

The TupleLiteral Exp syntax supports the use of atuple of named expression valuesin an expression.

TupleLiteralExpCs

A tuple literal comprises the Tupl e keyword followed by braces enclosing a comma-separated list of
one or more Tuplel iteral Parts.

Tupl e{year: I nt eger = 2000' , mont h: St ri ng="January', day: I nteger="1"}
2.2.1.16. TupleLiteralPart

The TupleLiteralPart syntax supports the use of a named expression value in atuple of such values.

The part comprises the name, an optional type and avalue. If the type is omitted, it is inferred from the
value.

| eapyear : Bool ean = true

2.2.1.17. TypelLiteralExp

The TypeLitera Exp syntax supports the use of types as values in an expression. This is useful for
expressionssuchasmyCol | ecti on. ocl AsType(Set <My Type>).

TypeliteralExpC3 -

A TypeLiteralExp comprisesa TypeL.iteral.
2.2.1.18. NestedExp

The NestedExp syntax supports the use of an inner expression as aterm in an outer expression ensuring
that the operator precedence of the inner expression is not affected by the outer expression,

MestedExpCS |

A nested expression is just an expression surrounded by parentheses.

2.2.1.19. IfExp

The IfExp syntax supports the use of a conditional choice of expression valuein an expression.

Eclipse OCL 5.0 11

Users Guide

IfEnpCs

An if expression comprises a condition expression to be tested followed by a then-expression to be
evaluated if the condition istrue and an el se-expression for evaluation if the expression is false.

if this.size > that.size then this else that endif

Note that the el se-expression is required and so there is no ambiguity when multiple if expressions are
nested.

2.2.1.20. LetExp

The LetExp syntax supports the introduction of local variablesto facilitate re-use of intermediate results
within an expression.

LetExpCS

A let expression comprises the let keyword followed by one or more comma-separated let variables and
then the in keyword and the in-expression to be evaluated with the help of the extra variables.

Each let variable comprises a name, an optional type and an expression to initialize the variable. If the
type is omitted, it isinferred from theinitializer.

let test : String = 'prefix[contents]suffix’,
start : Integer = test.indexOr('['),
finish : Integer = test.indexOr(']")

in test.substring(start, finish)

Thelet syntax has no terminating keyword such as endlet and so there is an ambiguity for for instance 1
+ let b: Integer = 2 in b + 4. Theambiguity isresolvedas1l + let b : |nteger
= 2 in (b + 4) by sdecting the longest possible in-expression.

2.2.1.21. NameExp

The NameExp syntax supports the use of the name of amodel element such as a property, operation or
typein an expression.

MameExpCSs

A name expression comprises a name optionally prefixed by double-colon separate path names.

Thefirst nameis an UnrestrictedName, that is a name that does not clash with any OCL reserved words
such as el se or built-in types such as St r i ng. Subsequent names are UnreservedName allowing the
re-use of built-in type names but not reserved words.

2.2.1.22. IndexExp

The IndexExp syntax supports the application of qualifiersto amodel property to distinguish the source
or select a particular association.

IndexExpCs

Eclipse OCL 5.0 12

Users Guide

A NameExp identifying amodel property is optionally qualified by afirst list of qualifiers and a second
list of qualifiers.

This syntax is experimental and the qualifiers are not yet supported for evaluation.

2.2.1.23. NavigatingExp

The NavigatingExp syntax supports the navigation of models using model properties, operations and
iterations.

MavigatingExpC5_Base -

MavigatingExpC5s

An IndexExp identifying a potentially qualified model feature is optionally followed by a parenthesized
arguments. If the parenthesized arguments are omitted the model feature should be a Property. If the
arguments are present the model feature should be an iteration or operation.

The diverse syntaxes specified by OCL 2.4 for OperationCallExpCS and lteratorEXpCS create
ambiguities that are difficult to parse. The merged grammar used by Eclipse OCL gathers argument
contributions without imposing premature validation.

The parenthesized arguments may be empty, or may comprise one or more parameters, optional
accumulators and optional bodies.

The comma-separated list of parameters starts with a NavigatingArgCs, followed by any number of
NavigatingCommaArgCS.

si nmpl eCal | (si npl eArgunent)

Eclipse OCL 5.0 13

Users Guide

The optional comma-separated list of accumulators are introduced by a semi-colon-prefixed
NavigatingSemiArgCsS, followed by any number of NavigatingCommaArgCS.

some->iterate(p; anAccumulator : Integer = 0 | p.size())

The optiona commaseparated list of bodies are introduced by a vertical-bar-prefixed
NavigatingBarArgCs, followed by any number of NavigatingCommaArgCS.

sonme->exi sts(p | p.size())

2.2.1.24. NavigatingArg

The NavigatingArg syntaxes supports the parsing of potential parameters, accumulators and bodies for
use in NavigatingExps.

NavigatngAraCs

MavigatingBarArgC5s n

MavigatingCommaArgC5

MavigatingSemiArgCSs l

MavigatingArgExpCS —-—

Each syntax supports an optional type and an optional initializer for an expression.

2.2.1.25. PrefixedExp

The PrefixedExp syntax supports the application of zero or more prefix unary operators to an expression.

PrefixedExpCS

The prefix operator precedes an expression: - 4 or not (t hi s or that)
The unary operators are

e - negate

e not logical complement

2.2.1.26. InfixedExp

The InfixedExp syntax supportsthe application of zero or moreinfix binary operators between expression
terms.

InfixedExpCS

Theinfix operators separate expressionterms:1 + 2 / 3 * 4 /| 5 + 6.
Theinfix operators are
* The NavigationOperators

e * [multiply and divide

Eclipse OCL 5.0 14

Users Guide

e +,- add and subtract

e <, <=,>=, > relational comparisons
» =, <> equdity and inequality

» and logical and

e or inclusive or

» xor exclusiveor

* inplies logica implication

The precedence and associativity of the operatorsis defined by the OCL Standard Library model, not by
the grammar. The OCL 2.4 library precedence is as presented above with all operators left associative.
The example above isthereforeinterpretedas (1 + (((2 / 3) * 4) /| 5)) + 6.

2.2.1.27. NavigationOperators
The NavigationOperators operators are
. for object navigation
» - > for collection navigation

2.2.1.28. TypeExp
The TypeExp syntax supports the use of types as expressions.

A type expression may be a
e TypeNameExpCS - a user-defined type
» TypeliteralCS - abuilt-in or aggregate type
2.2.1.29. TypeNameExp
The TypeNameExp syntax supports the use of a user-defined types as a declaration or expression.

TypeNameExpCS5

A name expression comprises the name of a type optionally prefixed by double-colon separate path
names.

Thefirst nameis an UnrestrictedName, that is a name that does not clash with any OCL reserved words
such as el se or built-in types such as St r i ng. Subsequent names are UnreservedName allowing the
re-use of built-in type names but not reserved words.

2.2.1.30. TypelLiteral
The TypelLiteral syntax supports the use of built-in or aggregate types as declarations or expressions.

TypeLiteralCs

A Typelitera may bea
» PrimitiveTypeCS

» CollectionTypeCS

» TupleTypeCS

Eclipse OCL 5.0 15

Users Guide

2.2.1.31. PrimitiveType
The PrimitiveType syntax supports the definition of a built-in type for usein adeclaration or expression.

The built-in types are
* Boolean

* Integer

* Red

 String

* UnlimitedNatural
* OclAny

* Ocllnvalid

* OclVoid

2.2.1.32. CollectionType

The CollectionType syntax supports the definition of a collection type for use in a declaration or
expression.

CollectionTypeCS

A collection type comprises the CollectionTypel dentifier followed by a Type Expression defining the
type of the collection elements.

Set (String) or Sequence<Bag<I nt eger >>
The built-in CollectionTypel dentifiers are

» Collection

* Bag

* OrderedSet

* Sequence

o Set

OCL 2.4 specifies the use of parentheses to surround the element type. Eclipse OCL additionally allows
angle brackets as specified by UML and as may be required to support more general templated types.

2.2.1.33. TupleType
The TupleType syntax supports the definition of a tuple type for use in a declaration or expression.

TupleTypeCs

A tuple type comprises the Tupl e keyword followed by a comma-separated list of one or more
TupleParts.

Eclipse OCL 5.0 16

Users Guide

OCL 2.4 specifies the use of parentheses to surround the parts. Eclipse OCL additionally allows angle
brackets as specified by UML and as may be required to support more general templated types.

Tupl e<year: | nteger, nont h: Stri ng, day: | nt eger >

2.2.1.34. TuplePart
The TuplePart syntax supports the definition of an element of a TupleType.

The part comprises the name and atype and a value.
| eapyear : Bool ean

2.2.1.35. UnreservedName

The Essential OCL reserved words are and, el se, endi f,fal se,if,inplies,in,invalid,
| et,not,null,or,self,then,true, xor. These can only be used as nhames when escaped as
in_"self'.

2.2.1.36. UnrestrictedName

The Essential OCL restricted words are the reserved words above and the OCL reserved type

names which are Bag, Bool ean, Col | ecti on, | nt eger, Lanbda, Ccl Any, Ccl | nval i d,

Ccl Message, Ccl Sel f, Ocl Voi d, Or der edSet , Real , Sequence, Set, String, Tupl e,

Unl i m t edNat ur al . An UnrestrictedName can be used in any context. The reserved type names

can be used following a: : qualification, Without qualification unrestricted names must be escaped as
' Bool ean' .

Lanbda isused in experimental syntax that realizes iterator bodies as lambda-expressions.

2.3. The OCLinEcore Language

Ecore Abstract Syntax supports the use of OCL embedded within EAnnotations.

The OCLinEcorelanguage providesatextual Concrete Syntax that makes both Ecore and OCL accessible
to users. Examples may be found in OCLinEcore Library Metamodel and OCL inEcore Helpers.

The OCLinEcore tooling provides a rich editing environment based on Xtext with strong semantic
checking.

OCLinEcore is more than just an editor for OCL in Ecore, it is useful for
* providing a coherent textual view of an Ecore meta-model

* providing syntax sugar for some Ecore conventions

* editing and validating OCL

* integrating OCL into Ecore

Itisplanned to takethe syntactic sugar further and providefull support for al class-related UML concepts.
The language therefore uses UML asits point of reference wherever possible.

The OCLinEcore tooling may be used directly on *.ecore files, or on their *.oclinecore textual
counterparts.

Please follow the OCL inEcore tutorial for an introduction to the language and its tooling.

2.3.1. Syntax

The OCLinEcore syntax has a consistent structure influenced by the informal definitions in OMG
specifications and by the Ecore hierarchy. Most Ecore concepts are represented by a syntax of the form:

* optional primary adjectives

» mandatory keyword

» mandatory name facet

o further facets

* an optional braced clause of secondary adjectives
 an optiona braced clause of elements

Eclipse OCL 5.0 17

Users Guide

« composed elements
¢ annotations
e constraints
Thusin;
abstract class Exanple extends Base { interface } { ... }

» abstract isaprimary adjective

» cl ass isakeyword

* Exanpl e isthe name facet

» extends Base isafurther facet

« { interface } supportsthe secondary interface adjective.
« { ... } providesanested context for class content.

2.3.1.1. Grammar Implementation
The grammar used by the Xtext editors may be found at:
/srclorg/eclipse/ocl/examples/xtext/oclinecore/OCLinEcore.xtext

in the org.eclipse.ocl.examples.xtext.oclinecore plugin. The OCLinEcore grammar extends the Essential
OCL grammar.

2.3.1.2. Module
The Module syntax supports the overall structure of an Ecorefile

RootPackageCs

The definition of the module comprises

* optional module declaration

« optional specification of the OCL Standard libraries

« optional import of referenced Ecore or UML or OCLinEcore resources
 ahierarchy of Packages

s i} N o 1]

Zero or more external libraries may be imported so that their definitions are merged to form a composite
library of basic and extended evaluation capahility.

The implicit import of the default OCL Standard Library is suppressed, if any library isimported. The
default library may be extended by specifying it as the first library import.

library ocl : "http://ww. eclipse.org/ocl/3.1.0/CCL.oclstdlib’

The namespace URI of thefirst library package defines the namespace URI of the compositelibrary. The
namespace URI of subsequent library imports may not conflict, but may be null.

ImporCS) I) I

Zero or more external metamodels may be imported.

2.3.1.3. Package
The Package syntax supports a nested hierarchy of packages and classifiers

PackageCS I J H

A Package has a name and optionally a namespace prefix and namespace URI.

Eclipse OCL 5.0 18

Users Guide

The content of a Package may comprise Packages, Classifiers and Annotations.

2.3.1.4. Classifier
The Classifier syntax supports the definition of types within a Package.

ClassifierCS

A Classifier may be
» aClass

» aDataType
» an Enumeration with associated EnumerationLiterals

2.3.1.5. DataType
The DataType syntax supports the definition of an EDataType.

DataTypeCS

A DataType has a name and optionally template parameters and an instance class name.

' senalizable '

Isenalizable

[
L

A DataType may be seriaizable; by default it is not.
The content of a DataType may comprise invariants and Annotations.

2.3.1.6. Enumeration
The Enumeration syntax supports the definition of an EEnum.

An Enumeration has a name and optionally template parameters and an instance class name.

serializable
lserializable

C

Eclipse OCL 5.0 19

Users Guide

An Enumeration may be serializable; by default it is not.
The content of an Enumeration may comprise enumeration literals, invariants and Annotations.

2.3.1.7. EnumerationLiteral
The EnumerationLiteral syntax supports the definition of an EEnumL.iteral.

EnumerationLiteralCS

An EnumerationLiteral has a name and optionally avalue.
The content of an EnumerationLiteral may comprise Annotations.

2.3.1.8. Class
The Class syntax supports the definition of an EClass.
* optional abstract prefix
« optional extension of other classifiers
* optional invariants, annotations, features and operations

A Class may be abstract has a name and optionally template parameters.
(NB, the *abstract’ prefix is optional, even though the figure indicates that it is mandatory.)

A Class may extend one or more other Classes that may be specialized using the template parameters.

] _.

A Class may have an instance class name, and may also be declared to be an interface.

[

L
The content of a Class may comprise Annotations, Operations, Structural Features and invariants.

2.3.1.9. StructuralFeature
The Structural Feature syntax supports the definition of the Structural Features.

StructuralFeatureCS {:}

Eclipse OCL 5.0 20

Users Guide

A Structural Feature may be
» an Attribute
» aReference

2.3.1.10. Attribute
The Attribute syntax supports the definition of an EAttribute; a Property with a DataType value.

An Attribute may be static and has a name.

Thest at i ¢ qualifier supports declaration of static properties which are supported by UML and OCL.
Note that Ecore does not support static properties.

Thedefi ni ti on quaifier isan obsolete experimental syntax for Complete OCL definitions.

o

An Attribute may may have a Type and multiplicity.

derived

Iderived

ordered

lordered

transient

unigue

lunsettable

volatile

“lEﬁ#EifE-#%%-#

Ivolatile

Eclipse OCL 5.0 21

Users Guide

An Attribute may asimpleinitializer and avariety of qualifiers:

» deri ved specifiesaderived attribute (default ! der i ved)

* i d specifies that the attribute provides the identifier if its class (default ! i d)

» or der ed specifies that the attribute elements are ordered (default ! or der ed)

» readonl y specifiesthat the attribute elements are readonly (not changeable) (default ! r eadonl y)
* transi ent specifiesthat the attribute elements are computed on the fly (default ! t r ansi ent)

» uni que specifiesthat there are no duplicate attribute elements (default uni que)

» unsett abl e specifiesthat attribute element may have no value (default ! unset t abl e)

» vol ati | e specifiesthat the attribute elements are not persisted (default ! vol ati | e)

The content of an Attribute may comprise Annotations, initial and derived constraints.

A simple constant value may be defined using the initializer. A computed value requires the use of a
constraint. If both initial and derived constraints are present, the initial constraint isignored.

The defaults for multiplicity lower and upper bound and for or der ed and uni que follow the UML
specification and so correspondsto asingle element Set thatis[1] {uni que, ! or der ed} . Note that
UML defaults differ from the Ecore defaults which correspond to an optional element OrderedSet, that
is[?] {ordered, uni que}.

2.3.1.11. Reference

The Reference syntax supports the definition of an EReference; a Property with a Class value.

ReferenceCS

An Reference may be static and has a name and optionally an opposite name.

Thest at i ¢ qualifier supports declaration of static properties which are supported by UML and OCL.
Note that Ecore does not support static properties.

Thedefi ni ti on quaifier isan obsolete experimental syntax for Complete OCL definitions.

A Reference may may have a Type and multiplicity.

Eclipse OCL 5.0 22

Users Guide

derived

Iderived

ordered

lordered

resolve

Iresolve

unigue

volatile

Ivolatile

]
H
E =[5 7] 3 E
HIF RO Il
gllg 32 2=
e-
[~]

A Reference may asimpleinitializer and avariety of qudifiers:

composes specifies acomposed (containing) reference (default ! conposes)

deri ved specifies aderived reference (default ! der i ved)

or der ed specifies that the reference elements are ordered (default ! or der ed)

r eadonl y specifiesthat the reference elements are readonly (not changeable) (default! r eadonl y)
r esol ve specifies that the reference elements proxies may need resolution (default ! r esol ve)
transi ent specifiesthat the reference elements are computed on the fly (default ! t r ansi ent)
uni que specifiesthat there are no duplicate reference elements (default uni que)

unset t abl e specifiesthat reference element may have no value (default ! unset t abl e)

vol ati | e specifiesthat the reference elements are not persisted (default ! vol ati | e)

Eclipse OCL 5.0 23

Users Guide

The content of a Reference may comprise keys, Annotations, initial and derived constraints.

A simple constant value may be defined using the initializer. A computed value requires the use of a
congtraint. If both initial and derived constraints are present, the initial constraint isignored.

The defaults for multiplicity lower and upper bound and for or der ed and uni que follow the UML
specification and so correspondsto asingle element Set thatis[1] {uni que, ! or der ed} . Note that
UML defaults differ from the Ecore defaults which correspond to an optional element OrderedSet, that
is[?] {ordered, uni que}.

2.3.1.12. Operation
The Operation syntax supports the definition of an EOperation.

==

An Operation may be static and has a name and optionally template parameters.

OperationCS

Thest at i ¢ qualifier supports declaration of static operations which are supported by UML and OCL.
Note that Ecore does not support static operations.

Thedef i ni ti on qualifier isan obsolete experimental syntax for Complete OCL definitions.

An Operation may have areturn Type and multiplicity.

An Operation may declare zero or more throw Exceptions.

Eclipse OCL 5.0 24

Users Guide

derved

lderived

ordered *
lordered

naguee

An Operation may have avariety of qualifiers:

» deri ved specifies aderived operation (default ! der i ved)

» or der ed specifies that the returned elements are ordered (default ! or der ed)

» uni que specifiesthat there are no duplicate returned elements (default uni que)

The content of an Operation may comprise Annotations, precondition, postcondition and body
constraints.

Thest at i ¢ qualifier supports declaration of static operations which are supported by UML and OCL.
Note that Ecore does not support static operations.

Thedef i ni ti on quaifier isan obsolete experimental syntax for Complete OCL definitions.

The defaults for multiplicity lower and upper bound and for or der ed and uni que follow the UML
specification and so correspondsto asingle element Set thatis[1] {uni que, ! or der ed} . Note that
UML defaults differ from the Ecore defaults which correspond to an optiona element OrderedSet, that
is[?] {ordered, uni que}.

2.3.1.13. Parameter

The Parameter syntax supports the definition of an EParameter.

ParameterCS

A Parameter has aname, optional "Type:#OCLinEcore-TypeRef and multiplicity

Eclipse OCL 5.0 25

Users Guide

'
| lunique |

lunigue

A Parameter may have avariety of qualifiers:

» order ed specifies that the returned elements are ordered (default ! or der ed)

e uni que specifiesthat there are no duplicate returned elements (default uni que)
The content of a Parameter may comprise Annotations.

The defaults for multiplicity lower and upper bound and for or der ed and uni que follow the UML
specification and so correspondsto asingle element Set thatis[1] {uni que, ! or der ed} . Note that
UML defaults differ from the Ecore defaults which correspond to an optional element OrderedSet, that
is[?] {ordered, uni que}.

2.3.1.14. Types

The Type syntax supports the definition of EType and EGenericType in conjunction with an
ETypedElement. The syntax is very similar to Java.

Wildcard TypeRefCS

TypedRefCS

Primitive TypeRefCS

TypedTypeRefCS

PrimitiveTypeRefCS provides access to the built-in OCL types and their corrersponding Ecore

counterparts

OCL type Ecoretype
Boolean EBoolean
Integer EBiglnteger
Real EBigDecimal
String EString
UnlimitedNatural EBiglnteger

TypedTypeRefCS provides for user defined types and their template parameterisation.

Eclipse OCL 5.0 26

Users Guide

2.3.1.15. AnnotationElement

The AnnotationElement syntax supports the definition of an EAnnotation hierarchy with details,
references and contents.

AnnotationElementCS @

An AnnotationElement may be Annotation or Documentation.

2.3.1.16. Annotation

The Annotation syntax supports the definition of an EAnnotation hierarchy with details, references and
contents.

An Annotation has a source URI, which may be specified without quotesif the URI isjust a name.

The content of an Annotation may comprise

» Annotations
» content elements
» names that reference other elements

2.3.1.17. Detail
The Detail syntax supports the definition of a detail of an EAnnotation.

DetailCs

A detail comprises a detail key and optional value.

2.3.1.18. Documentation
The Documentation syntax is an experimental syntactic sugar for agenmodel annotation.

AnnotationElementCS @

Itislikely to be replaced by a Javadoc-style comment that will be persisted in Ecore.

2.3.1.19. Constraints

The Constraints syntax supports the embedding of OCL expressions as invariants for classes, as
preconditions, postconditions or bodies for operations and initial or derived values for properties.

Eclipse OCL 5.0 27

Users Guide

mcosmacs ol { T AT
DerivedConstrairtCS I _ I
IntizlConstraintCS — initial I _ I

InvanantConstraintCS

PostconditionConstraintCS _ I _ I
PreconditionConstrairtCS _ I _ I

SpecificationC5 — —

The integration occurs through the SpecificationCS rule that invokes an ExpCS. (The alternative
UnquotedString is an implementation detail that supports the import from Ecore where the OCL isin
unparsed textual form rather than an analyzed syntax tree.)

A classinvariant may be cal | abl e to specify that the Ecore representation is to use the EOperation
rather than EAnnotation representation.

A class invariant optionally supports a second OCL expression as a parenthesis on the invariant name.
This parenthesized expression isinvoked when an invariant failsin order to provide auser-defined failure
message. Whether this message is an error or awarning is determined by the evaluation of the invariant:

2.3.1.20. Terminals

The OCLinEcore grammar extens the Esstial OCL grammar which should be consulted for definition
of INT, and ExpCS.

INTEGER —.—
LOWER —.—

- @
et @

2.3.1.21. Names
An Unrestricted name is any name other than the OCL reserved keywords. See UnrestrictedName.

Eclipse OCL 5.0 28

Users Guide

An Unreserved name is any name other than the OCL reserved keywords above or the OCL reserved
types. See UnreservedName.

If you need to use any of these names or non-al phanumeric names, you must use the escaped string syntax
foraname: e.g. 't rue' . Theusua Javabackslash escapes, with the exception of octal are supported:
_"new- | i nes\ n\ x0a\ uooo0a'

2.3.1.22. Comments
Single line comments are supported by ignoring all text following - - .
Multi line comments are supported by ignoring all text within/* ... */.

Documentation comments are supported for al text within /** ... */. Unfortunately no
documentation EAnnotation is currently created.

2.3.2. Limitations

OCLinEcore supports the full capabilities of Ecore, however the support for upper and lower bounds on
generic types has not been adequately tested.

OCLinEcore provides primary syntaxes for some Ecore conventions such as genmodel annotations and
constraints; much more support is needed for feature maps.

2.4. The Complete OCL Language

The Complete OCL provides alanguage for a document in which OCL complements an existing meta-
model with invariants, and additional features.

2.4.1. Syntax
The Complete OCL syntax is defined by the OMG OCL 2.4 specification.

The syntax comprises keywords such as cont ext followed by appropriate names and punctuation and
OCL expressions.

With the exception of endpackage there is no terminating punctuation and so the conseguences of a
syntax error can be quite far-reaching while editing a document. Concentrate on the first error.

A substantial example of Complete OCL may befound by installing the Royal AndL oyal Example Project.

2.4.1.1. Grammar Implementation
The grammar used by the Xtext editors may be found at:
/srclorg/eclipse/ocl/exampl es/xtext/compl eteocl/CompleteOCL . xtext

in the org.eclipse.ocl.examples.xtext.completeocl plugin. The Complete OCL grammar extends the
Essential OCL grammar.

2.4.1.2. Complete OCL Document

The Document syntax defines a Complete OCL document, for which *.ocl is the default extension.

CompleteQCLDocumentCS

A Complete OCL document may

 import meta-models to be complemented

* include additional Complute OCL documents

* gpecify one or more Standard Library documents

and then provide complements for one of more Packages, Classifiers or Features.

The import, include and library declarations are Eclipse OCL extensions. The OCL 2.4 specification
provides no mechanism for a Complete OCL document to reference external material.

Eclipse OCL 5.0 29

Users Guide

The primary definitions of each meta-model may be imported by specifying the URI of a Package and
optionally an alias for that Package.

Theimport may be from a*.ecore, *.uml or *.oclinecore file.

Additional documents complementing meta-model may be included by specifying the URI of the
Complete OCL document.

LibraryCs

Zero or more external libraries may be imported so that their definitions are merged to form a composite
library of basic and extended evaluation capability.

The implicit import of the default OCL Standard Library is suppressed, if any library isimported. The
default library may be extended by specifying it asthe first library import.

library ocl : "http://ww. eclipse.org/ocl/3.1.0/CCL.oclstdlib’

The namespace URI of thefirst library package defines the namespace URI of the compositelibrary. The
namespace URI of subsequent library imports may not conflict, but may be null.

2.4.1.3. PackageDeclaration
The PackageDeclaration syntax identifies a Package to be complemented.

PackageDedarationC5

The package keyword is followed by the optionally qualified name of the package to be complemented.

Thenameisfollowed by the declaration contextsto be complemented and finally an endpackage keyword.

2.4.1.4. ContextDecl
The ContextDecl syntax identifies amodel element to be complemented.

ContextDedCs

A complemented context may bea
 Classifier Context

» Operation Context
* Property Context

2.4.1.5. ClassifierContextDecl
The ClassifierContextDecl syntax identifies a Classifier to be complemented.

Classifier ContextDedCS

The context keyword isfollowed by an optional declaration of the name of the context variable. If omitted
the context variableisnamed sel f .

Eclipse OCL 5.0 30

Users Guide

Then the optionally qualified name of the classifier to be complemented is defined. Qualification is
required if the classifier context isspecified directly as part of the document. Qualification may be omitted
when the classifier context is specified as part of a package declaration.

Finally the content of the classifier context may comprise
» Def to define an additional feature
* Inv to define an invariant

2.4.1.6. Def
The Def syntax defines an additional Feature for a Classifier.

The definition may define a static feature with a feature name.

A further name may be specified for no very obvious purpose other than symmetry with an invariant.
The optional name is not used.

A parenthesized parameter list must be specified to define an operation and omitted for a property
definition.

Then the property or optional operation return type is specified followed by the specification of the
property initializer or operation body.

An additional definition is usable within an OCL expression as if it was defined in the complemented
meta-model. For the purposes of reflection the additional appear as part of the complemented meta-model,
however they remain complements and are not persisted with that meta-model.

24.1.7. Inv

The Inv syntax defines an invariant for a Classifier.

InvCs

The inv keyword is followed by an optional invariant name an optional violation message and the
specification of the invariant.

Eclipse OCL 5.0 31

Users Guide

The optional name may be used by validation environments to identify the invariant in a control panel
and in diagnostic messages.

Theoptional violation message providesan OCL expression that may be used by avalidation environment
to provide a custom message to explain a broken invariant. The severity of the invariant violationm may
be controlled by the value of the invariant expression.

o trueindicates that the invariant was satisfied

+ falseindicates that the invariant was violated with warning severity
 null indicates that the invariant was violated with error severity

* invalid indicates that the invariant failed to evaluate

In the Indigo release, the local variables of the invariant are not accessible to the violation message
expression. Thiswill be changed in afuture release.

In the Indigo release, custom messages are available when a CompleteOCLEObjectValidator is used as
the EValidator. Thisis not the case for validation in the Sample Ecore Editor and so a default message
using the invariant name and the failing object is provided.

2.4.1.8. OperationContextDecl
The OperationContextDecl syntax identifies an Operation to be complemented.

OperationContextDedCS

The context keyword is followed by the optionally qualified name of the operation to be complemented.
Qualification is aways required since the operation context may be specified as part of the document or
a package declaration but not a classifier.

The name is followed by a parenthesized parameter list.

Finally an optional return type and the operation constraints are specified. The operation constraints may
comprise

» aBody to define operation body

* Preto define a precondition on the operation

* Post to define a postcondition on the operation

Any number of preconditions and postconditions can be specified. Only one body is permitted.

2.4.1.9. Parameter

The Parameter syntax identifies a Parameter of an Operation to be complemented.

Eclipse OCL 5.0 32

Users Guide

A parameter comprises an optional name and Essential OCL type declaration.

The parameter name may be omitted for Operation Contexts if the parameter name is not used by any
of the constraints.

The parameter nameis required for Operation Definitions.

Note that the type declarations are Essential OCL types such as Sequence<St ri ng> rather than

UML’s and OCLinEcore's String[*] {ordered !unique}. There are plans to unify these
syntaxes.

2.4.1.10. Body
The Body syntax defines the body for a complemented Operation.

The body keyword is followed by an optional name and the body specification.
The optional name is not used.

2.4.1.11. Post
The Post syntax defines a postcondition for a complemented Operation.

The post keyword is followed by an optional name and the postcondition specification.
The optional name may be used by a validation environment to identify afailing postcondition.
The Indigo release parses and persists postconditions but does not evaluate them.

2.4.1.12. Pre

The Pre syntax defines a precondition for a complemented Operation.

The pre keyword is followed by an optional name and the precondition specification.
The optional name may be used by a validation environment to identify afailing precondition.
The Indigo release parses and persists preconditions but does not evaluate them.

2.4.1.13. PropertyContextDecl
The PropertyContextDecl syntax identifies a Property to be complemented.

PropertyContextDedC5

The context keyword is followed by the optionally qualified name of the property to be complemented.

Quialification is always required since the property context may be specified as part of the document or
a package declaration but not aclassifier.

Eclipse OCL 5.0 33

Users Guide

Finally the property type and the property constraints are specified. The property constraints may
comprise

* an Init to specify an initialization

» aDer to specify a derivation

Aninitialization is specified to define the property value when the property is created.
A derivation is specified to define the property value at all times.

It does not therefore make sense to specify both an an initial and an all-time value. If both are specified
the derivation is used.

2.4.1.14. Init
The Init syntax defines an initial value for a complemented Property.

Theinit keyword and colon are followed by the initial value specification.

2.4.1.15. Der
The Der syntax defines a derived value for a complemented Property.

The der keyword and colon are followed by the derived value specification.

2.4.1.16. Specification
The Specification syntax provides an OCL expression to specify some aspect of acomplemented model.

SpecificationCs l

The specification comprises and Essential OCL Expression.

2.4.1.17. NavigatingExp
The NavigatingExp syntax defines enhancements to the Essential OCL NavigatingExp syntax.

ES
MavigatingExpCS_Base |

The name of a model element may have a further @pre qualification for use within an operation
postcondition. It allows the postcondition to access the value on entry to an operation.

MavigatingArgExpCS {ﬁ}

? may be specified as the argument in a navigating expression to indicate unknown values when testing
sent messages.

2.4.1.18. NavigationOperators
The Essential OCL NavigationOperators are extended to support
» " to test whether a message has been sent message

» " toreference the content of amessage

2.4.1.19. UnreservedName

The Complete OCL reserved words are unchanged from Essential OCL, consequently a Complete OCL
Unreserved name is the same as an Essential OCL UnreservedName.

2.4.1.20. UnrestrictedName

The Complete OCL has two additional built-in types: Ccl Message and Ccl St at e. These names and
the Essential OCL RestrictedNames are not available without qualification or escaping.

Eclipse OCL 5.0 34

Users Guide

2.5. The OCL Standard Library Language

The OCL Standard Library Language is used to define the OCL Standard Library, for which *.oclstdlib
isthe default extension.

The standard library can be replaced or extended.

The source for the OCL Standard Library may be found at model/OCL-2.5.0clstdlib in the
org.eclipse.ocl.examples.library plugin.

2.5.1. Syntax

2.5.1.1. Grammar Implementation
The grammar used by the Xtext editors may be found at:
/srclorgleclipse/ocl/examples/xtext/ocl stdlib/OCL stdlib.xtext
in the org.eclipse.ocl.examples.xtext.oclstdlib plugin. The OCL Standard Library grammar extends the

Essential OCL grammar.
2.5.1.2. OCL Standard Library Document

The Library syntax defines an OCL Standard Library document, for which *.oclstdlib is the default
extension.

Library

Zero or more library documents may be imported for use within the composite library whose name must
be specified.

A namespace prefix and namespace URI may optionally be specified.

l

The body of the document comprises

* optional module declaration

» optional specification of the OCL Standard libraries

« optional import of referenced Ecore or UML or OCLinEcore resources
* Precedences

 ahierarchy of Packages

» ahierarchy of Classifiers

» Annotations

LibraryCs

Zero or more external libraries may be imported so that their definitions are merged to form a composite
library of basic and extended evaluation capability.

The default library may be extended by specifying it as thefirst library import.

Eclipse OCL 5.0 35

Users Guide

library 'http://ww.eclipse.org/ocl/3.1.0/OCL. ocl stdlib'

The namespace URI of thefirst library package defines the namespace URI of the compositelibrary. The
namespace URI of subsequent library imports may not conflict, but may be null.

2.5.1.3. Precedence
The Precedence syntax defines the precedence and associativity of infix operators.

PrecedenceCs H

right

Each entry in alist of precedences names a precedence level taht can then be used by an infix operator.
Each level can be either left or right associative.

Multiple lists of precedence levels can be merged from imported libraries provided the lists are
interleaveable with conflict or ambiguity.

2.5.1.4. Package
The Package syntax defines a nested hierarchy of packages and classifiers.

PackageCs I =

A Package has a name and optionally a namespace prefix and namespace URI.

The content of a Package may comprise Packages, Classifiers and Annotations.

2.5.1.5. Class and Classifier
The Class and Classifier syntax define atype within a Package.

ClassifierCs —-—
ClassCs

A Class has a name and optionally template parameters. A class may also hame the metatype such as
PrimtiveType that the Classis an instance of.

conformsTo

A Class may extend one or more other Classes that may be specialized using the template parameters.

The content of a Class may comprise Operations, Properties, Invariants and Annotations.

Eclipse OCL 5.0 36

Users Guide

2.5.1.6. Inv
The Inv syntax defines an invariant constraint.

2.5.1.7. Operation
The general Operation syntax defines a conventional Operation or Iteration.

2.5.1.8. LibOperation
The LibOperation syntax defines a conventional Operation.

LibOperationCs |)

An Operation may be static and has a name and optionally template parameters.

An Operation has zero of more Parameters.

:

An Operation has areturn Type. An infix operation may specify a precedence level. An operation may
specify the name of a Java class implementing the org.eclipse.ocl.examples.library.LibraryOperation
interface. This class is used when evaluating the operation.

[
L]

The content of an Operation may comprise Preconditions, Postconditions and Annotations.

Thest at i ¢ qualifier supports declaration of static library operationssuch asal | | nst ances() that
are invoked on types rather than objects.

2.5.1.9. Liblteration
The Liblteration syntax defines an Iteration.

An Iteration has a name and optionally template parameters.

Eclipse OCL 5.0 37

Users Guide

An Iteration has one or more comma-separated |terators.

Optionally following a bar, an Iteration has one or more comma-separated Parameters.

An lteration has a return Type. An lteration may specify the name of a Java class implementing
the org.eclipse.ocl.examples.library.Librarylteration interface. This class is used when evaluating the
iteration.

=

[
L]

The content of an Iteration may comprise Preconditions, Postconditions and Annotations.

2.5.1.10. Iterator
The Iterator syntax defines an Iterator.

2.5.1.11. Accumulator
The Accumulator syntax defines an Accumulator.

2.5.1.12. Parameter
The Parameter syntax defines a Parameter.

ParameterCs

2.5.1.13. Pre
The Pre syntax defines a precondition constraint.

Eclipse OCL 5.0 38

Users Guide

recs o< " {1

2.5.1.14. Post

The Post syntax defines a postcondition constraint.

e S !

2.5.1.15. LibProperty

The LibProperty syntax defines an Property.

An Property may be static and has aname and a Type.

K8

A Property may specify the name of a Java class implementing the
org.eclipse.ocl.examples.library.LibraryProperty interface. This class is used when evaluating the
iteration.

The content of a Property may comprise Annotations.

2.5.1.16. Specification

2.6.

The Specification syntax integrates an OCL Expression as the specification of a constraint.

SpedficationCs —-—
Editors

The four editors are all generated using Xtext, and so exhibit similar behavior to other Eclipse editors.
The standard facilities are

* syntax coloring

+ folding

 outlineview

* hover text

* syntax validation

* semantic validation

The following facilities have partial functionality

* go to definition

 content assist

* templates

* quick fixes

« find references

The following facilities have little or no functionality
* rename element

+ fina validation

Eclipse OCL 5.0 39

../../org.eclipse.xtext.doc/contents/xtext.html

Users Guide

2.6.1. Syntax coloring

The editors use similar colorsto JDT.
 green for comments

* bold purple for keywords

* grey for numbers

* bluefor strings

Additionally

« italicsfor text referencing a definition

References for which the name of the definition matches a keyword use italics in the same way as other
crossreferences. Names of adefinition matching akeyword use bold purplein the sameway askeywords.

The syntax coloring may be changed using the Window->Pr efer ences->OCL pages.

2.6.2. Validation

Syntax errors are detected and offending text is underlined with accompanying annotations and problem
markers.

If there are no syntax errors, semantic validation is performed with similar feedback of problems.
Semantic validation isnot performed when there are syntax errorssince asingle syntax error may provoke
many hundreds of semantic errors. These can make the original syntax error difficult to resolve.

The use of the well-formedness rules for a final validation of the Abstract Syntax is only partialy
implemented, since correction of the OCL in the OMG specifiucation is still work in progress.

By default, the Xtext nature is not added to projects using OCL editors and so no builder runs in the
background creating problem markers for OCL files. Thisis generally beneficial when you have many
files for which the over-enthusiastic rebuilds waste build time, or experimental files for which the many
errors clutter the Problem View.

If your OCL is good quality, you may activate the Xtext nature and builder by selecting the project and
then invoking Configure->Add Xtext Nature.

2.6.3. Hover Text

Hover text has been implemented to provide feedback on the usage and type of expression terms. For
instance hovering over the size operation in the example below reveals that it is an Operation for the
L oan specialization of Collection .

body: leans-»size() < copies;

[Operation: Collection <Loan>::size <Loan ={) : Integﬂ

(Note that the Class specialization for Loan is incorrectly shown again as an Operation specialization.)

2.6.4. Content Assist

Typing Ctrl and Space activates the Content Assist pop-up to offer suggestions asto what might be typed
to theright of the cursor.

self.; |1l
=+ UnspedfiedType :I Operation: OcAny::_'<="(0OcAny) : Boolean
=+books
8 ecore
Book[& hasManiker
: Mem = instanceClassMame J
. ecor O isAbstract
o igInterface
O jsStatic
& igTemplate
B co & igTemplateParameter
c=library

=+loans LI

Eclipse OCL 5.0 40

Users Guide

2.6.5. Code Templates

Code templates are provided for many of the major constructs and some expression elements.

Y ou may define your own templates. If you would like to contribute them, please raise a Bugzilla.

2.6.6. Open Declaration

Itis possible to navigate to a definition provided an editor is already open for the definition.

2.7. Console

There are two interactive OCL consoles that enable OCL expressions to be evaluated on amodel.

The classic Inter active Console may be created by invoking OCL ->Show OCL Console from the right
button menu of some model editors such asthe Sample Ecore M odel Editor. Alternatively the Console
view may be created by Window->Show View->Console followed by selecting I nteractive OCL from
the Open Console pull-down in the Console View tool bar. See the OCLinEcore Tutoria for detailed

step-by-step pictures.

The Pivot Interactive Xtext Console may be similarly created by OCL->Show Xtext OCL Console
from the menu or I nteractive Xtext OCL from the pull-down.

The two consoles should exhibit similar behaviors, however not all facilities of the classic console have

yet been reproduced on the new.

&) Tutorial xmi E3

-

= 0

E- < Library lib
----- 4 Book b1
----- 4 Book b2

----- 4 Member m2
----- 4 Memberm3

(= D platform:/resource.forg eclipse ocl examples project oclinecoretutorial /madel/ Tutorial xmi

EEI---@ platform:/resourceforg eclipse .ocl examples project .oclinecoretutorial /model/ Tutorial ecore

* Pr [@ Ja [l De [+ e [B)co 53

@EﬂEF‘rW = His} JUJUWE,?M u,:-,Pﬂ = 5

-

Ytext OCL for "Library lib::Member m1° : Member

Lk 3| 2B -7- ~

Evaluating:
self.library.books
Results:

Library lib::Book bl
Library lib::Book b2

Kl

selF.Librﬂry.M

_I €4 Unresolved Property tutorial::Librany: book”
4

1 quick: fix available:

The Console, shown in the bottom half of the figure, comprises a combined Title and Tool Bar, Results

Panel and Entry Panel.

2.7.1. Context Object Selection

Expressions are evaluated with respect to a context object sel f that has a corresponding metamodel
type. This object is defined by selecting any widget whose implementation is adaptable to an EObject.

Eclipse OCL 5.0

41

Users Guide

Therefore selecting an EAttributein the Sample Ecore Editor will makethe selected EAttributesel f and
EAttribute the metamodel type. In the figure selecting the Member named m1 in the Sample Reflective
Ecore Model Editor has made Member the select type of sel f and m1 the selected context object. For
the Pivot Console there is additional support to use selections from the Outline of an Xtext editor or
Variables View of the OCL Debugger as the context object.

The Pivot Console displays the selected object and type in the Console title.

The classic Consol e relies on the platform selection mechanism to show the selected object in the overall
Eclipse Status display at the bottom left of the workspace window. This display may be lost when the
selection is changed to a non-EObject selection.

2.7.2. Editing

The bottom panel supports entry and evaluation of a multi-line expression. The expression is evaluated
when Enter is entered.

Theclassic Console has hand-coded syntax highlighting and context assist that may be activated by typing
Ctrl + Space.

The Pivot Console uses the Xtext Essential OCL editor and largely auto-generated syntax highlighting,
error indications, hover text, quick fixes and context assist that may be activated by typing Ctrl + Space.

The content assist for the Pivot Console has not yet been customized, so the classic Console content assi st
is probably more comprehensive, however the Pivot Console shares the same library definitions as the
other editors and so is more consistent.

2.7.3. Editor Keys

ThePage-Up and Page-Down keys may be used to scroll through the history of input commands enabling
previous commands to be re-used. Use of the Page keysis necessary since the input is potentially multi-
line and so Up and Down navigate over the multiple lines.

2.7.4. Results

The larger middle panel displays the results of each evaluation in a scrolling window.

2.7.5. Tool Bar

2.7.5.1. Ecore/UML binding
The classic Console provides a selection to determine whether the context object has a type defined by
an Ecore or UML metamodel. This selection is not required for the Pivot Console which automatically
converts Ecore or UML modelsto Pivot models.

2.7.5.2. M1/M2

The classic Console provides a selection to determine whether the selected metamodel binding isthat for
objects (M2) or types (M 1). Thisselection is not needed for the Pivot Consol e since the Pivot metamodel
is an instance of itself.

2.7.5.3. Clear Console
The standard clear console functionality clears the results pane.

2.7.5.4. Close Console
The standard close console functionality closes the current console.

2.7.5.5. Debug
Starts the OCL _Debugger using the current mouse selection as self and the text in the Console input as
the exopression to execute.

2.7.5.6. Load/Save an expression

The classic Console provides an ability to save and reload edited expressions as XMl files. The XMl isa
pragmatic Eclipse Ecore realisation of the OCL specification for which XMI interchangeisnot realisable.

Eclipse OCL 5.0 42

Users Guide

The Pivot Console provides a similar ability to save and reload edited expressions as XM files. The
XMI isa prototype that might evolve and be adopted by afuture version of the OCL specification. This
functionality has not been properly tested.

2.8. Validity View (new in Luna)

2.8.1.

The standard EMF validation capabilities provide a useful overview of problems:
» asmarkersin the source model,

» asmarkersin the Problems View,

* in Pop-up diaogs.

The Validity View provides a much more detailed view of the problems and so assistsin debugging bad
models and/or bad constaints.

The Validity View may be shown by invoking OCL ->Show Validity View from the right button menu
of some model editors such as the Sample Ecore Model Editor. Alternatively the Validity View view
may be created by Window->Show View->Other... OCL->Validity View.

validity View = BlAe 0| H-EH-~
Model Elements = | = | b!.l Metamodel Constraints T E | S | N
type filter text type filter text
4 [#] g4 Library lib in platform:/resource/org.eclipse.c ~ 4 [¥]3 M tutoriol in plotform:/resource/org.eclipse.ocl.exan
4 [¥]g+4 Bookbl 4 [V g B Book
W] gEa tutorial:Book:Sufficient Copies 4[] 3B SufficientCopies
a4 [/] 7<% BookbZ [w]g 4 Library lib:Bock b1
[] & B8 tutorial::Book::Sufficient Copies [+] &4 Library lib:Beck b2
a4 [¥]g 4+ Memberm1 4 ¥ g B Member
W] gEa tutorial:Member:AtMostTwoloans 4[] 3= AtMostTwoloans
W] gEa tutorigl:Member:Unigueloans [Wg 4 Library lib:Member m1
a4 [¥]g 4 Memberm2 []g 4 Library lib:Member m2
W] gEa tutorial:zMember:AtMostTwoloans [w] &4 Library lib:Member m3
W] gE= tutorial:Member:Uniqueloans 4 [¥] 3= Unigueloans
a [] 54 Memberm3 [Wg 4 Library lib:Member m1
[#] 2B tutorigl:zMember:AtMostTwoloans []g 4 Library lib:Member m2
[w] 3B tutorial:Member:Uniqueloans [wle & |ibrary lihafember m3
4 [¥] 8 tuterial in platform:/resource/org.eclipse.ocl. |_!, The 'Member:Uniqueloans' constraint is violated for 'Me
. [#]s B Book
- [+ H Library
. [¥1a H Loan e
< > < >

The left-hand pane titled Model Elements provides a tree view of the Resources in a ResourceSet in a
similar fashion to the Sample Ecore Editor. However an additional child el ement (in blueitalics) isadded
for each constraint applicable to its parent element. Checkboxes enable or disable the element from re-
validations and JUnit-like status icons show the status of the most recent validation. Hovertext provides
further detail.

The right-hand pane titled Metamodel Constraints provides a tree view of the model hierarchies that
contribute constraints. An additional child element is added for each model element to which the
constraint applies.

The displays track the mouse selection in other views. Whenever the mouse selection can be resolved
to an EObject, that EObject’ s ResourceSet populates the left hand pane and constraints affecting the left
hand pane populate the right hand pane. Tracking the mouse selection is quite expensive, and probably
irritating. It can be inhibited by pinning the view to the current selection.

There is generally much too much detall if all elements and constraints are considered and so the view
provides many facilitiesto facilitate focusing on the interesting combinations.

View Tool Bar

The View Tool Bar is at the top and right of the view following the Vaidity View title. It provides
facilities common to both Model Elements and Metamodel Constraints.

Eclipse OCL 5.0 43

Users Guide

2.8.1.1. Expand All

The plusicon causes the Model Elements and Metamodel Constraints to be fully expanded to display all
their contents. Beware that for large models this may result in slow screen updates.

2.8.1.2. Collapse All

The minus icon causes the Model Elements and Metamodel Constraints to collapse to display only their
top level elements.

2.8.1.3. Pin

The pinicon togglesthe track current cursor selection. When unpinned, the default, any changein mouse
selection may cause recomputation of Model Elements and Metamodel Constraints contents. When
pinned the contents are stable.

2.8.1.4. Refresh

The double arrow icon causes the Model Elements and Metamodel Constraints to be recomputed. This
may be necessary for ametamodel change to be used.

2.8.1.5. Run

The white triangle in green circle icon runs a validation on al enabled model element/constraint
combinations updating the status indications for constraints in the left hand Model Element and model
elementsin right hand Constraint pane.

2.8.1.6. Filter

The Filtering menu hides unwanted contributions to the display. Each of the validation result statuses
can be individually enabled.

» Show al errors
* Show al infos
» Show all failures
» Show all warnings
» Show all successes
By default none of the selections are enabled so everything is shown. As soon as a specific status is
enabled all display elements with other non-enabled statuses are hidden. Thus selecting just * Show all
warnings" hides error/infoffailure/success results.
2.8.1.7. Save
This functionality does not appear to work in Luna SRO.
The floppy disk icon supports export of the validation results.

The available export formats are extensible through the
org.eclipse.ocl.examples.emf.validation.validity.validity_exporter extension point.

The default exporters support

html
An HTML file summarising the results.

model

An XMI model conforming to validity.ecore containing all results with references to the model elements
and constraints.

text
A text file summarising the results.

2.8.2. Model Elements Pane
The Model Elements Pane isthe left hand pane of the Validity View.

Eclipse OCL 5.0 44

Users Guide

It comprises atitle and tool bar, text filter and scrollable tree of model elements and their constraints.

2.8.2.1. Model Elements Tool Bar

The Model Elements Tool Bar is at the top and right of the left hand pane following the Model Elements
title. It provides facilities specific to the Model Elements.

Expand All

The plusicon causes the Model Elements to be fully expanded to display all their contents. Beware that
for large models this may result in slow screen updates.

Collapse All
The minus icon causes the Model Elements to collapse to display only their top level elements.

Enable All
Thetick icon causes all Model Elements to be enabled and so included in the next validation.

Disable All

The no-tick icon causes all Model Elements to be disabled and so excluded from the next validation.

Show/Hide disabled

The document icon with a query controls whether disabled Model Element selections are visible. A
diagonal strikethrough shows when selections are hidden.

By default disabled selections are hidden, which allows the unwanted root elements of large models to
be unchecked and so hidden before a slow attempt is made to display them.

2.8.2.2. Text Filter

The text filter takes a StringMatcher pattern that selects which elements are visible. The pattern may
contain

* a* to match zero or more characters
» a?to match exactly one character
 a\to escape the following character

2.8.2.3. Model Elements tree

The scrollable tree shows the containment hierarchy of all elements in the ResourceSet containing the
model element identified by the mouse selection.

The +/- collapse/expand icons preceding each element enabl e interesting el ements to be shown and others
folded away.

Each element is preceded by a check box that enables its usage within the next validation run. All
elements may be enabled or disabled using theiconsin the Model Elements Tool Bar. Enabling/disabling
individual elements enables/disables the element’s descendants and propagates a partial enable/disable
to the element’ s ancestors.

The checkbox is followed by avalidation status icon.

* tick for validation successful

* red cross for validation unsuccessful but incomplete

* blue cross for validation failure (incompl ete)

» amber warning for a validation warning

* question mark for no validation performed

The statusicon is followed by an element-specific icon identifying its type and label.

Double-clicking a leaf Constraint in the left-hand pane makes the corresponding constraint and parent
model-element visible in the right-hand pane.

Eclipse OCL 5.0 45

Users Guide

2.8.2.4. Model Elements Context Menu

The context menu in the model elements tree offers the following facilities in addition to those also
available in the toolbar.

Validate Selection
Revalidates all constraints applicable to the selected Model Element and its children.
This seems to revalidate all Model Elementsregardlessin Luna SRO.

Debug Single Enabled Selection
Launches the debugger for the selected Model Element and associated Constraint.

The entry is greyed out if more than one Constraint is selected, so the invocation should normally be
made from aleaf Constraint result.

Debug launching is only available for OCL constraintsin Luna SRO.

Show in Editor
Opens an editor for the selected Model Element or Metamodel Constraint.
Opening is not available for all forms of constraint in Luna SRO.

2.8.3. Metamodel Constraints Pane
The Metamodel Constraints Pane is the right hand pane of the Vaidity View.
It comprises atitle and tool bar, text filter and scrollable tree of metamodel constraints and the model

elements to which they apply.

2.8.3.1. Metamodel Constraints Tool Bar
The Metamodel Constraints Tool Bar is at the top and right of the right hand pane following the
Metamodel Constraintstitle. It provides facilities specific to the Metamodel Constraints.

Expand All

Theplusicon causesthe Metamodel Constraintsto befully expanded to display all their contents. Beware
that for large models this may result in slow screen updates.

Collapse All

The minus icon causes the Metamodel Constraints to collapse to display only their top level elements.
Enable All

Thetick icon causes all Metamodel Constraints to be enabled and so included in the next validation.
Disable All

The no-tick icon causes al Metamodel Constraints to be disabled and so excluded from the next

validation.

Show/Hide disabled

The document icon with a query controls whether disabled Metamodel Constraints selectionsarevisible.
A diagonal strikethrough shows when selections are hidden.

By default disabled selections are hidden, which allows the unwanted root elements of large metamodels
to be unchecked and so hidden before a slow attempt is made to display them.

2.8.3.2. Text Filter

The text filter takes a StringMatcher pattern that selects which elements are visible. The pattern may
contain

* a* to match zero or more characters
» a?to match exactly one character
 a\to escape the following character

Eclipse OCL 5.0 46

Users Guide

2.8.3.3. Metamodel Constraints tree

The scrollable tree shows the containment hierarchy of all constraints applicable to model elementsin
the ResourceSet containing the model element identified by the mouse selection.

The +/- collapse/expand icons preceding each element enabl e interesting el ementsto be shown and others
folded away.

Each element is preceded by a check box that enables its usage within the next validation run. All
elements may be enabled or disabled using theiconsin the Model Elements Tool Bar. Enabling/disabling
individual elements enables/disables the element’ s descendants and propagates a partial enable/disable
to the element’ s ancestors.

The checkbox isfollowed by avalidation status icon.

* tick for validation successful

» red cross for validation unsuccessful but incomplete

* blue cross for validation failure (incompl ete)

» amber warning for a validation warning

* question mark for no validation performed

The statusicon is followed by an element-specific icon identifying its type and label.

Double-clicking a leaf Model Element in the right-hand pane makes the corresponding Model Element
and parent Metamodel Constraint visible in the left-hand pane.

2.8.3.4. Metamodel Constraints Context Menu

The context menu in the metamodel constraints tree offers the following facilities in addition to those
also available in the toolbar.

Validate Selection
Revalidates all model elements applicable to the selected constraint and its children.
This seems to revalidate all Model Elements regardlessin Luna SRO.

Debug Single Enabled Selection
Launches the debugger for the selected Model Element and associated Constraint.

The entry is greyed out if more than one Constraint is selected, so the invocation should normally be
made from aleaf Model Element result.

Debug launching is only available for OCL constraintsin Luna SRO.

Show in Editor
Opens an editor for the selected Model Element or Metamodel Constraint.
Opening is not available for all forms of constraint in Luna SRO.

2.8.4. Constraint Locators

The constraints displayed in the right hand pane are located by constraint locators that are registered
withtheorg.eclipse.ocl.examples.emf.validation.validity.constraint_locator extension point. A constraint
locator implements org.eclipse.ocl.examples.emf.validation.validity.locator.ConstraintLocator or the
org.eclipse.ocl.examples.emf.validation.validity.ui.locator.ConstraintUlLocator to define location,
presentation, execution and debug launching of a particular kind of constraint.

Constraint locators are associated with metamodel namespaces which are determined by the nsURI of the
EPackagethat containsthe EClass of aModel Element EObject. Constraint locators may be registered for
aparticular metamodel namespace or for no namespace. Those registered for no namespace are activated
whenever a namespace is encountered for which no specific constraint locators are registered.

The following Constraint Locators are available by default.

2.8.4.1. org.eclipse.ocl.examples.emf.validation.validity.locator.EClassConstraintLocator

This constraint locator supports discovery of constraints realized by invariant EOperations in the Java
code generated by an EMF genmodel.

Eclipse OCL 5.0 47

Users Guide

2.8.4.2. org.eclipse.ocl.examples.emf.validation.validity.locator.EValidatorConstraintLocator
This constraint locator supports reflective discovery of validateX XXX methods in the Java code
generated by an EMF genmodel using the EV alidatorRegistry to identify the relevant Java code.

2.8.4.3. org.eclipse.ocl.examples.validity.locator.DelegateUIConstraintLocator
This constraint locator supports OCL constraints represented as EAnnotations in Ecore metamodels.

2.8.4.4. org.eclipse.ocl.examples.validity.locator.PivotUIConstraintLocator
This constraint locator supports discovery of org.eclipse.ocl.examples.pivot.Constraint classes in Pivot
metamodels.

2.8.4.5. org.eclipse.ocl.examples.validity.locator.UMLUIConstraintLocator

This constraint locator supports discovery of org.eclipse.uml2.uml.Constraint classes in UML
metamodels.

2.9. Debugger (new in Luna)

The OCL debugger supports debugging OCL constraints. It is a customization of the standard Eclipse
debugger and so most of the facilities should be familiar to users of the Eclipse Java debugger.

45 Debug 22 2 Type Hierarchy = B |[t9= Variables 2 % Breakpoints = 0
4 [d] test [OCL Expression] = | [
4 [] ExpressionIinOCL [debug_HjWr¥OgjEeOzStrTjezOww.ocl] - test Name Value ~
a f* Thread [main] (Suspended) 5 P— tionCallExp @663
= ecore:EPackage:oclDebuggerExpression() - debug_HjWrYOgjEeOzStiTjczQww.ocl line: 5 Lo LI b=l e
5 @ Ssource ‘tutorial’
= 4 @ self ecorenEPackage @5cab26b7
- =+ elnnotations OrderedSet(EAnnotation[*])[1
- =+ eClassifiers OrderedSet(EClassifier[*])[4]
. o+ gFactorylnstance ecorenEFactory @664e0e2]
= eSubpackages OrderedSet(EPackage[*])[0]
= eSuperPackage null
o name 'tutorial’
= nsPrefix ‘tut’
= nsURI ‘hitp://www.eclipse.org/mdt/ v
£ >
self.name.size()
& Tutorial.ecore [0] debug_HjWrYOgjEeOzstrTjczQww.ocl &3 = O || Outline &g v~ = O
1 import ‘http://www.eclipse.org/emf/2882/Ecore’ a [0] platform:/resource/C:/Development/Chital/Workspac A
2 Fl Q EPackage

3= context ecere: :EPackage
4= def: -oclDebuggerExpression() - : OclAny =
® 5 self.name.size() > 4

4 &% oclDebuggerbxpression() : Ocliny
a [| <ExpressioninQCL=
4 @ >(OclSelf) : Boolean
2| 4: UnlimitedMatural
4 [size() : Integer
4 [=] name: String
» [E] name: String
[r+]] self: EPackage
. lml civell s Intener
The screenshot shows
» Debug Stack Trace showing the context of nested evaluation environments
» Variables View showing intermediate and local variables
« Editor showing input and context after a couple of steps
* Outline showing the Concrete Syntax Tree context

The OCL Debugger isvery new, there are no doubt many opportunities for ergonomic improvements and
bug fixes. Please raise a Bugzilla .

2.9.1. Launching
Launching the debugger for an OCL constraint requires the user to provide two pieces of information
* the expression or constraint to evaluate

Eclipse OCL 5.0 48

http://bugs.eclipse.org/bugs/enter_bug.cgi?product=MDT.OCL

Users Guide

» the self object upon which to operate
These may be provided in avariety of ways

2.9.1.1. Selected model object and manually entered expression

An arbitrary OCL expression may be entered in the Xtext OCL Console and evaluated on amodel object
selected using amouse selection. The Debugger isinvoked from the debug icon on the Console Tool Bar.

| Tutorial.ecore = B

4] platform:/resource/org.eclipse.ccl.examples.project.cclinecoretutorial/model/ Tutorial.ecore

2 8 ttore]
. flm Ecore
- B Library
- H Book
- B Member
- H Loan

El Console i1 ¥ Tasks| [C] Properties | 47 Search| £ History = B

2] '_a“ﬁ#ﬂqlav;ﬂv -
Xtext OCL for 'tutorial' : EPackage

self.name.size() > 4

Clicking the debug icon creates a dummy Complete OCL file and then launches the debugger. The
expression is encapsulated as an oclDebugExpression operation extension to the type of the selected
object. The file provides the source for source level debugging. The console may be re-used while
debugging.

2.9.1.2. Selected model object/constraint combination

TheValidity View providesfine-grained display of the evaluation of each constraint applicableto amodel
element and vice-versa. One of these model element/constraint combinations may be selected and the
debugger launched using Debug Single Enabled Selection to investigate why validation is producing
unexpected results.

& Console | [+ ValidityView &3 = 0
validity View = B|Ae 0| - H-
Model Elements T B | - | %] Metamodel Constraints T B | v | LS
type filter text type filter text
a4 [#] g+ Library lib in platform:/resource/org.eclipse.ocl.exampl a [¥] g # tutorial in platform:/resource/org.eclipse.oclexamples.pr
a4 [¥]g+ Bookbl a [V 5 H Book
[#]gEa tutorial:Book:Sufficient Copies 4 [#] 5B SufficientCopies
a [V 5 % Bookb2 [W]g < Library lib:Book b1
% B2 tutorial:Book:SufficientCopies | [+]5,4 Library lib:Book b2
a Vg4 Mem [F Expand Al
M| 5 Collapse Al
VgE=
4 I:I<’ Mem| [+ Enable All Nodes
Vlge= Disable All Nodes
Vlg==
P i 4 Mem Showy/Hide Constraint-less or deselected Model Elementsand Model Elernent-less or deselected Constraints
MgE= @ Validate Selection

=l
Mé %5 Debug Single Enabled Selection

= Show In Editor

Eclipse OCL 5.0 49

Users Guide

2.9.1.3. Selected model object and selected constraint

An OCL Expression launch configuration may be created to select amodel element and a constraint for
execution or debugging.

The launch configuration may be created using Run->Run Configurations... or Debug->Debug
Configurations... from the Eclipse Menu Bar. This requires both Model Element and Constraint to be
selected separately.

Run Configurations

Mame: | 1340-debugger.textile

8] Main] Common
ocL

platform:/resource/org.eclipse.ocl.examples.project.completeochtutorial/model/ExtraXMIValidation.ocl | | Browse Workspace... | | Browse File...
Expression | Bad::BadClass: Tuple{message : String = "Wanted null’, status : Boolean = self.uncachedDerived.= (null)}.status W
Maodel
platform:/resource/org.eclipse.ocl.examples. project.completeocltutorial /model XMIT estFilexmi Browse Workspace... | | Browse File...
Element |Bad Class true v
Apply Revert
Run Close

Alternatively the context menu in model editors offers an OCL ->Debug... option that creates a Debug
Configuration in which the Model Element is pre-selected from the invoking context.

2.9.2. Stepping

OCL expressions can be very compact and generally occur embedded in a larger application. The
debugger is therefore optimized for this usage.
Rather than the line-based stepping typical of the Javadebugger, the OCL debugger supportsterm by term

stepping, highlighting the next term to be evaluated and showing the intermediate results as $-prefixed
namesin the Variables View.

The OCL debugger interpretation of the Step functionalities is adjusted to facilitate stepping to many
pointsin acomplex expression without needing to reformat the source with line breaks..

The Example Debugger View shows the imminent execution of “.size()” after stepping into “self” and
“.name”.

2.9.2.1. Step Into
A single OCL AST node is executed. The results can be inspected as inputs of a subsequent AST node.

2.9.2.2. Step Over
Execution proceeds until the next OCL AST node is associated with a new source line number.

2.9.2.3. Step Return
Execution proceeds until the next OCL AST node is associated with a reduced stack depth. Iterations
introduce nested stack entries so step return can step out of an iteration. let expressions and nested OCL
calls aso introduce additional stack nesting.

2.9.2.4. Resume
Execution proceeds until the next breakpoint.

Eclipse OCL 5.0 50

Users Guide

2.9.3. Variables View

The Variables View enables the local variables and intermediate results to be examined using OCL
syntaxes such as single quotes for Strings.

The Example Debugger View shows the “self” variable, which is an “ ecore::Package” instance, opened
to show its fields, amongst which the name s ‘tutorial’.

Intermediate variables are named using the property name of the subsequent AST node’s input. Thus
“$source” shows the OperationCall Exp.source input aready computed as “ self.name”. Multiple inputs
are diasmbiguated by suffixing asin “$argument[0]”.

“$pc” identifies the next instruction, which can be examined in just the same way as any other variable.

2.9.4. Breakpoints View

Line breakpoints can be set inthe Complete OCL editor and examined inthe BreakpointsView. Execution
stops when an OCL AST node has been executed that is associated with the line of a breakpoint.

No filtering facilities are yet available.

2.9.5. Outline View

The Outline currently shows the OCL Concrete Syntax Tree which is structurally similar to the Abstract
Syntax Treethat is executed. .

It would be more useful to show the AST and support Node breakpoints on it.

2.10. OCL Integration

The OCLinEcore Editor editor enables OCL to be embedded in Ecore. This section explains how that
OCL is executed.

The Complete OCL editor enables OCL to be provided as a complementing document. This section
explains how that complement isinstalled to become part of the complemented model.

The Interactive OCL console alows you to load OCL and execute OCL expression interactively.
The Java API explains how you can take control of the OCL installation and activation.

2.10.1. OCL execution in Ecore / EMF Delegates

The EMF delegate mechanisms and EAnnotations that enable EMF to delegate to OCL to support
* validation of invariants

* execution of operation bodies
 evaluation of property initial and derived values
are described in the Delegates section of the Programmers Guide.

2.10.2. Custom Validation Messages

Eclipse OCL supportsthe production of custom messages by defining a String-val ued message expression
as a parenthesized clause on an invariant.

2.10.2.1. Underlying support
An OCL invariant is an expression that returns a true or false value.

In Juno and Kepler, Eclipse OCL supported an extension whereby anull return indicated an ‘error’ rather
than a‘warning’, and an invalid return was ‘fatal’.

Luna supports a rich-invariant idiom whereby an invariant can compute a tuple of results, only one of
which is actually returned by tooling that does not understand the idiom. Rather than

i nvari ant | nvari ant Nane:

bool ean-val ued-i nvari ant - expr essi on;
Y ou can code additional information by recoding
ocl-status-expression
as

Eclipse OCL 5.0 51

Users Guide

invari ant | nvari ant Nane:
Tupl ef
st at us=bool ean- val ued-i nvari ant - expr essi on,
nmessage=st ri ng- val ued- nessage- expr essi on,
severity=i nteger-val ued- severity-expression, -- -ve error,0 ok, +ve warn
-- nmore customfields as desired
}. status;
The idiom is alittle verbose, but compatible with all OCL tooling. Eclipse OCL provides some editor
enhancements to make the usage more acceptable.

2.10.2.2. Editor syntax
In the OCLinEcoreTutorial Example thereis an alternative syntax for custom messages.
i nvari ant Suffici ent Copi es:
l'ibrary. | oans->sel ect ((book = self))->size() <= copies;
may be changed to
invariant SufficientCopies(' There are '
+ library. | oans->sel ect ((book = self))->size().toString()
+ ' loans for the ' + copies.toString() + "' copies of \'" + nane + "\'"):
l'i brary. | oans->sel ect ((book = self))->size() <= copies;
to replace the default diagnostic:
The ' SufficientCopies' constraint is violated on 'Book b2'.

by
There are 3 loans for the 2 copies of 'b2'.
Unfortunately, in the Luna release, EMF does not support this customization. This must be activated

explicitly using an EValidator that is aware of the ValidationDelegateExtension extended API. Thisis
available by using the OCL inEcoreEObjectValidator.

2.10.3. CompleteOCL Validation

Integration of Complete OCL documents is harder because Complete OCL complements pre-existing
models. These cannot always be aware of the existence of that complement, since the author of a model
cannot know what complements may be added by its users.

The complete model formed from the primary models and the OCL complements is application-specific
and so applications must gather the contributions together. Prior to the Indigo release, this restricted
Complete OCL usage to Java applications that could gather the complements.

The CompleteOCL EObjectV alidator may be used to install a Complete OCL document.

In many editors an OCL->Load Document is available in the context menu to facilitate loading a
complementary Complete OCL document.

= Load Complete OCL Document M=] E3

Resource URls: | Browse Registered OCL Flles...l Browse File System... | Browse Workspace... |

You may Drag and Drop from an Eclipse or Operating System Bxplorer.

oK Cancel

Y ou may drag and drop one or more files from within Eclipse or outside Eclipse into the dialog, or use
one of the browser buttons to locate a Complete OCL document.

2.10.3.1. Browse Registered OCL Files...

The org.eclipse.ocl.examples.xtext.completeocl.complete_ocl_registry may be used to register Complete
OCL filesagainst the nsURI s that they complement. These extension points may be defined in plugins or

Eclipse OCL 5.0 52

Users Guide

projects. In either case clicking Browse Registered OCL Files... presents a list of registered Complete
OCL documents applicable to the context from which the dialog was invoked.

2.10.3.2. Browse File System...

The Browse File System... button present afile system explorer so that a Complete OCL document file
can found anywhere.

2.10.3.3. Browse Workspace...

The Browse Workspace... button present a workspace explorer so that a Complete OCL document file
can found within the workspace.

2.10.4. OCLinEcore for Xtext Validation

If you want to use OCLinEcore as a validation language for Xtext you must:

Use amanually maintained Ecore model to define your parsed grammar model, otherwise your embedded
OCL will be lost each time you regenerate the editor. For non-trivial models, switching from auto-
generated to manual maintenance is a good idea, since you may heed to control changes carefully to
maintain upward compatibility for existing models.

Modify the Validator class generated by genmodel to extend OCLinEcoreEObjectValidator rather than
EObjectValidator. See OCLinEcoreEObjectV alidator for details.

2.10.5. Complete OCL for Xtext Validation

If you want to use Complete OCL as a validation language for Xtext, you may use the
CompleteOCL EObjectValidator to register the Complete OCL for EMF Validation. This may readily be
achieved by reusing the empty example JavaValidator created by Xtext to install the Complete OCL. If
your Xtext language is Sates, and your Complete OCL is model/Sates.ocl in SatesProject you should
change your StatesJavaValidator to:

public class StatesJavaValidator extends AbstractStatesJavaVali dator

{

@verride
public void register(EValidatorRegistrar registrar) ({
super.register(registrar);
St at esPackage ePackage = St at esPackage. el NSTANCE;
URI ocl URI = URI.createPl atfornmResourceURl (
"/ St at esProj ect/ nodel / States. ocl ™, true);
regi strar.register(ePackage,
new Conpl et eOCLECDhj ect Val i dat or (ePackage, ocl URl));

}
2.11. OCL in UML (using Papyrus)

(This documentation applies to Papyrus 1.0.0.)
The behaviour of a UML model may be elaborated using OCL to define
* operation bodies

* property derivations/initializers

« classinvariantsto be observed by user model instances

* stereotype invariants to be observed by user model elements
 guards for state machines

2.11.1. UML Integration

Although the UML metamodel makes extensive use of OCL to specify its own well-formedness, there
is no explicit ability to use OCL within UML. Usage of OCL, or any other language, is enabled by the
flexibility of the ValueSpecification class and the OpagueExpression extension.

The metamodel specifiesthe usage of aValueSpecification wherever avalue can sensibly be provided by
avariety of technologies. Simple values can be provided by, for instance, aLiteral String or LiteralInteger.

Eclipse OCL 5.0 53

Users Guide

More interesting values by an OpaqueExpression that has two interesting list features, one of language
names and the other of string bodiesin the corresponding language. Thelists provide an ability to provide
implementationsin avariety of languages. In practice only oneisused and if thelanguage nameisomitted,
an implementation default of OCL is assumed.

Specification of abehaviour such as“name.toUpper()” can be achieved by an OpagueExpressioninwhich
the language is Sequence(* OCL’) and the body is Sequence(' name.toUpper()’). The OCL is therefore
embedded in atextual form that has no knowledge of the classes in the OCL metamodel.

Users of the OCL Java APl may avoid the need to incur OCL parsing costs by exploiting
OCL’s ExpressionlnOCL class that extends ValueSpecification and delegates functionality to an
OCLEXxpression.

2.11.2. Class Diagram

2.11.2.1. Class Invariant

A class invariant specifies a constraint that must be true for all well-formed instances of the class. It is
specified in Papyrus, by:

* create a Constraint Node on a Class Diagram
 select Constraint on palette
« click on diagram where you want it
« click onthe Class you want as the Constraint context
« optionally replace the auto-generated Constraint name
* select the Constraint
« typeanew namein the Properties View
» define the Specification of the Constraint with OCL text
* sdlect the Constraint
 type F2 (or click again) to open the Essential OCL editor
* enter the required constraint text
« click outside the editor to close

=] NamedClass
=1 + name: String [1] weontexts {7} AtLeastSixCharacters N
{{OCL} self.name.size) == 6}

42 + prefixedMame(in prefix: String): String

o of]

Bg NewDiagram 5% I

=] Properties 22 J Model ‘u’alidatiorﬂ =] Console\l L,\/ ‘u’alidity‘u"lew\l ._,’ ¥ = 0
{7} Atl eastSixCharacters
| -
UML Name |AtLeast SixCharacters Constrained element ir | X | "-.'Pl S@l & |
Comments Visibility Jpubic =l
Profile
Style Context Q MNamedClass EI
Appearance
Rulers And Grid
Advanced Specification |@ self name size) == 6

The «Context» link provides a graphical view of the Context selection in the Properties View. It isthe
context that defines the type of OCL’ssel f and so defines what is constrained.

Y ou may edit the OCL text using direct edit as described above or from The Properties View. (Note that
the editor has a significant start up time on the first usage, so be patient).

Eclipse OCL 5.0 4

Users Guide

Your OCL text entry is validated automatically; an error or warning marker will be shown on the
Constraint if it is not satisfactory. Once you have corrected the errors you may need to invoke Validate-
>Model Treeto make the marker go away.

Q MNamedClass ‘

=l + name: String [1] weontexts {7} Atl eastSixCharacters X
{{OCL} self.name.sie() >= 6}
§§ + prefixedMame(in prefix String): String "Parsing emor for Model::NamedClass::At Least SixCharacters:self name siel) = 6

The ‘Model::NamedClass’ constraint is invalid: ‘self .name sie) == &'
1: Unresolved Operation "String: sie()’
1: Unresolved Operation "Oclinvalid::x=(Unlimited Natural ™

~T 1

2.11.2.2. Operation Precondition, Postcondition and Body
Preconditions specify constraints that must be satisfied before operation execution starts.

Postconditions specify constraintsthat must be satisfied after operation execution finishes. Postconditions
may use the reserved parameter namer esul t to refer to the one result permitted by OCL. The @pre
suffix may be used to refer to the state of variables prior to execution of the operation.

In OCL, a body-expression defines the functionality of a query operation as a result-type-vaued
expression such as sone- conputation. In contrast in UML, a body-condition defines the
functionality of the operation as a Boolean-valued constraint on theresult suchasr esul t = (some-
conput at i on) . Papyrus supports the OCL interpretation and so theresult = (...) wrapper
may be omitted.

In Papyrus, once the operation has been defined, preconditions, postconditions and a body-condition are
all drawn by

* create a Constraint Node on a Class Diagram
 select Constraint on palette
« click on diagram where you want it
« type Esc since context links cannot be drawn to operations
« optionally replace the auto-generated Constraint name
 select the Constraint
* typeanew namein the Properties View
* define the Constraint Context
« select the Operation

 usethe appropriate Add Elements (+ icon) for Precondition or Postcondition, or the Body condition
... browser to locate the constraint

» define the Specification of the Constraint with OCL text
 select the Constraint
 type F2 (or click again) to open the Essential OCL editor
« enter the required constraint text
« click outside the editor to close

Note that the context of Operation Constraints must be specified by assigning a Constraint to one of the
precondition/postcondition/bodycondition roles. Assignment of the context of the constraint directly fails
to alocate the constraint to itsrole.

Eclipse OCL 5.0 55

Users Guide

73 *1710m1di

Py

{7} NamelsDefined

{{OCL} not self.name.ocllsUndefined()}

Q NamedClass
& + name: String [1]

{7} PrefidsDefined
{1OCL} not prefic.oclisUndefined()}

I

+ prefixedMame(in prefic

String): String

{7} BodyExpression
HOCL) self.name + prefix}

£l

[

{7} PostCondition
{{OCL] result = self.name + prefix}

o

B3 NewDiagmm &3 I

[Propesties 52/ Model Vaidaiion | & Console | [+ ValidiyView | 4 <=0
& prefixedName
W Name |5reﬁxedName
Comments s abstract Qiue @ fase Is leaf Qe @ false
Ztr;f:e Is query ®tue Ofalse Is static Otue @ fase
Appearance Body condition ’m EI Visibility public =l
.::Lj(:: Grid Concumency Isequerma\ j
Method | | é\}‘l *l _?l Owned parameter ﬁl @l lJulf‘l *l _?l
& prefix
5 result
Precondtion G| B| 2 Postcondition | 8| 2

{7} NamelsDefined
{7} PrefixlsDefined

{2} PostCondition

Note that in Papyrus 1.0, there is no stereotype display to indicate the precondition/postcondition/body-

condition

role.

Note that the OCL expressions for preconditions and postconditions should be Boolean-valued. The
result-valued body-expression form should be used for a body-condition.

The owning type of the Operationisused asOCL’ssel f context.

The Operation should be a query if a body-condition is provided.

In Luna, use of r esul t within postconditions incorrectly reports an unknown property. The error can
be ignored.

2.11.2.3. Property Initializers

An OpagueExpression whose value is an OCL expression string can be used to define the default or
derived value of a Property initializer.

* select the Property to make the Properties View relevant
« click the Create a new Object (+ icon) for the Default value

» Select OpagueExpression from the menu

« click the Add elements (+ icon) for the Language

» select OCL in the left pane and click the right arrow to move to the right pane

e click O

K

 enter the OCL text in the large pane

e click O

K

Eclipse OCL 5.0

56

Users Guide

[Pro [Se [Pro [Hist (2P [Tl P 32

= name

A
UML

Comments
Profile

Style
Appearance
Rulers And Grid
Advanced

Name

ls derived

Is leaf

ls read only
Is unique
Type

Default value

Subsetted property

O] B | 9= Van| 35 De | % Bre | JudU| @ Ja |Bco |Gt |@rPu|fipu| = O

B =

|name
Qe @ false s derived union Otue @ false
Qtue @ false Is ordered Qtue @ false
Qtue @ falss |= static Qtue @ false
@tue Ofdse Visibilty fublic =l
[String EI Multiplicity IT j
#1¥ self ol Type(name Aggregation hone [

| | B | ® | & | Redefined propety | ®| 2

Unfortunately, in Luna, the context does not appear to be correctly set for editor, so there is an error
onsel f and no syntax help.

2.11.2.4. Profile Constraint

A Profile Constraint is very similar to a Class Invariant. However since the Profileis Constraint is drawn
at M2, it may be evaluated at M1 to check a UML Class Diagram for consistency. In contrast a Class
Invariant drawn at M1, may be evaluated by user tooling at MO to validate user models. It is specified

in Papyrus, by:
* create a Constraint Node on a Profile Diagram
¢ select Constraint on palette
« click on diagram where you want it
« click on the Stereotype you want as the Constraint context
« optionally replace the auto-generated Constraint name
¢ sdlect the Constraint
 typeanew namein the Properties View
* define the Specification of the Constraint with OCL text
* select the Constraint
 type F2 (or click again) to open the Essential OCL editor
« enter the required constraint text
« click outside the editor to close

~3 *1710m2profile.di 3
. S AtLeastTenCounts N
smeteciasss | olintey {{OCL} self. MaxCount>10}
MamedElement | = + MaxCount: Integer [1]
il
NewDiagram 53
| ———
(1 Propetties 53 ./ Model Validation | 2 Console | [/ ValidtyView| f2 Type Hierarchy | 2w =@
{7} AtLeastTenCounts
[
UML Name IAtLeastTenCounts Constrained element ir | b | "-n'}’l Nl & |
Comments Visibility public =]
Profile
Style Context Counter IZ'
Appearance
Rulers And Grid
Advanced Specification |E seff. MaxCount=10

The OCL text can also be edited within the Properties View.

Eclipse OCL 5.0 57

Users Guide

2.11.3. State Machine Diagram

The primary element of a StateMachine diagram is the StateMachine, which is a Type, but does not
normally have Properties. A StateMachine should therefore be defined as a nested type of a containing
type. This may be achieved within Papyrus Model Explorer by dragging the StateMachine to be a child
of aClass.

2.11.3.1. Statemachine Constraint

A Constraint may be applied to a Statemachine in the same way as for a Class to specify an invariant
of the Statemachine.

2.11.3.2. Statemachine Transition Guard

The guard condition of a Statemachine Transition may be specified by associating a Constraint with a
Transition. The Transition should already exist and the Statemachine should be anested type of asuitable
typefor OCL’ssel f . The guard condition is drawn in Papyrus by

* create a Constraint Node on a StateMachine Diagram
 select Constraint on palette
« click on diagram where you want it
« optionally enter the required constraint text
* type Esc to close editor
« optionally replace the auto-generated Constraint name
 select the Constraint, if not already selected
« typeanew namein the Properties View
* define the Constraint Context
« select the Constraint, if not already selected
» usethe Context ... browser in the Properties View to locate the transition
« define the Specification of the Constraint with OCL text
 select the Constraint, if not already selected
 type F2 (or click again) to open the Essential OCL editor
« enter the required constraint text
« click outside the editor to close

B Model Explorer 2 = B8 ’i ﬁ ;
EEREBRRES Y “l4q

EHES Model | StateMachine)

%{;, <Package Import> UML Primitive Types

E| Q galmedclass Islong {7} IsLongMame [N
= rame OCL self.name.size() » 32
| &0 SateMachine [self.namesize() » 32] HOCL}seff.namesiz=() > 32)

=3 Regionl
E‘@J lsLong e
{7} IsLongMName x| E
(==
i - E:ﬂn:ama T.c MNewDiagram £3 I Ea []assDiagmm‘
i nghame
ﬂa Diagram MewDiagram

7 Praperies 52 Model Valication |) Consle| [VaiddtyView| 2 Type Hierarchy | A ~= 0

{7} IsLongName

—
UML Name IsLonghame Constrained element ‘Gl @l ﬁ?l *l ﬁl
Commerts Visibilty Jpublic =
Profile
Style Context & tsLong El
Appearance
Rulers And Grid
Advanced Specification |@ selff.name size() > 32

Therequired Transition is specified as the Guard of the Transition.

The owning type of the Statemachine defines OCL’ssel f . In the absence of an owning typesel f will
be undefined and OCL constraint validation will fail. Y ou must therefore ensure that the StateMachine
has a Class parent and that the Class has the required properties; nane for this example. Once Class and
properties are defined using a Class diagram. The

Eclipse OCL 5.0 58

Users Guide

2.12. User Interface

2.12.1.

The user interface comprises

+ Editors
 Console

» Debugger
 Validity View

» Workspace Preference Pages

» Project Property Pages

e OCL->Load Document Menu Action

Project Property Pages

The Project Property Pages are accessible by invoking Properties from the right button context menu

of aproject.

= Properties for org_eclipse ocl-feature

- Resource
- Builders
- Gt

Ecore and LML Bindings

ocL P

Options common to all bindings.

¥ Enable project specific settings Configure Workspace Settings. .

Executor targeted by the default OCL delegate Ihttp:,-’f'www eclipse.org/emf/2002/Ecore OCL/LPG j

Model Registry Realisation of OCL embedded within Ecore models IDeIegate for interpretation at untime j
i OCLinEcore
‘e LUML Binding
- Papyrus
- Project References
- Run/Debug Settings
- Task Fepostory
- WikiText Restore Defaus | Apply |
|® ,TI Cancel |

In principle, it is possible to specify project-specific settings, however in practice is not often possible
for application code to determine the prevailing project. Project-specific properties are therefore often

ignored and may be removed in afuture release.

The Property pages are:

* Overall Options

» OCLinEcore editor Options

* Options applicable to the Ecore and UML bindings

» Options applicable to just the UML bindings
* The Model Registry

2.12.2. Workspace Preference Pages

The Workspace Preference Pages are accessible by invoking Preferences from the Window menu on

the toolbar.

Eclipse OCL 5.0

59

Users Guide

ocL & o= o

- __ Ecore and UML Bindin Options commaon to all bindings.

- OCLinEcore
[=)- Syntax Coloring
- CompleteQCL Realisation of OCL embedded within Ecore models IDeIegate for interpretation at untime j
- EssentialOCL
- Markup

- OCLinEcore
- QCLstdlib

- Templates

- CompleteQCL
- EssentialOCL
- Markup

- OCLinEcore
- QCLstdlib

o - LIML Binding | _DlLI Festore Defaults | Apply |

|® QK I Cancel |

Executor targeted by the default OCL delegate Ihﬂp:f’f\-\'\-\w eclipse org/emf /2002/Ecore /OCL/LPG j

The Preference pages are:

» Overall Options

» OCLinEcore editor Options

» Options applicable to the Ecore and UML bindings
 Options applicable to just the UML bindings

» Editor Syntax Coloring

 Editor Templates

2.12.3. Overall Options
The two overall options are independent of the Ecore/lUML/Pivot bindings.

2.12.3.1. Default Delegation Mode
The Eclipse OCL project provides two execution engines which may be used to support EMF Delegates.

Executor targeted by the default OCL delegate http:/Awww eclipse orgemf 2002/ Ecore /OCL/LPG j
hitp ./ Awww eclipse org/emf 2002/ Ecore /OCL

hitp ./ fwww eclipse.org/emf /2002/Ecore /OCL/LPG
hitp ./ Awww.eclipse org/emf 2002/ Ecore /OCL/Pivot

http://www.eclipse.org/emf/2002/Ecore/OCL/LPG

EMF Delegate annotations referencing the htt p: // www. ecl i pse. or g/ enf/ 2002/ Ecor e/
OCL/ LPGURI are serviced by the classic evaluator that uses the LPG parser.

This URI was introduced in the Indigo release.

http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot

EMF Delegate annotations referencing the htt p: // www. ecl i pse. or g/ enf/ 2002/ Ecor e/
OCL/ Pi vot URI are serviced by the new experimental evaluator that uses the UML-aligned Pivot
model.

This URI was introduced in the Indigo rel ease and was imposed by the Indigo OCLinEcore editor.

http://lwww.eclipse.org/emf/2002/Ecore/OCL

EMF Delegate annotationsreferencingtheht t p: / / www. ecl i pse. or g/ enf/ 2002/ Ecor e/ OCL
URI are serviced by the evaluator selected on the preference page by the Default Delegation Mode.

This URI was introduced in the Helios rel ease and was imposed by the Helios OCLinEcore editor.
Use of an Indigo or Juno editor converts the URI to use the Pivot eva uator.

Eclipse OCL 5.0 60

Users Guide

In Kepler, aprevailing URI in the input file is preserved, unless changed by the context menu setting.
If no prevailing URI exists a default is determined by an OCLinEcore preference setting that defaults
to the Pivot evaluator.

2.12.3.2. Code Generation Mode

Juno introduced an experimental ability to replace the delegated interpreted execution of OCL by direct
execution of compiled Java code. Thisfacility has been substantially improved and tested for the Kepler
release.

Optimisations for Luna included inlining the bodies directly into the EMF Impl classes; the suggestion
“Generate Java Code in xxxBodies classes’ should therefore read “ Generate Java Code in xxxImpl
classes’.

Further optimisations are scheduled for Mars.

Realisation of OCL embedded within Ecore models IDeIegate for interpretation at untime j

Delegate for interpretation at undime
Generate Java Code in xooBodies classes

This option may be selected to change the realization of OCL option.

Delegate for interpretation at run-time

Selecting the default delegation mode retains the Helios and Indigo functionality whereby genmodel
generates Java code that encodes the OCL expressions astext strings. Each expression islazily compiled
at run-time with the result being cached to reduce overheads for repeated execution.

Generate Java code in xxxBodies classes
Selecting Java code generation causes genmodel to run Xtend templates that generate
» aPackage Tablesjavafile
* inline OCL implementations within the Class Impl.javafiles

The tables file contains an optimised model representation alowing polymorphic operations to be
dispatched in constant time.

The implementation files contain Java code corresponding to each OCL expression defining operation
bodies or property initiaizers.

Disclaimer: the generated code is experimental has yet to be optimized and so is only about five times
faster than the interpreted execution.

2.12.4. Ecore and UML Options
The options for the Ecore and UML bindings.

Eclipse OCL 5.0 61

Users Guide

2.12.5. UML Options
The options for the UML binding.

psociation [

2.12.6. Model Registry
The Model Registry is now deprecated.

2.12.7. Syntax Coloring
The standard Xtext syntax coloring facilities are provided for each of the OCL editors.

2.12.8. Editor Templates
The standard Xtext editor template facilities are provided for each of the OCL editors.

Eclipse OCL 5.0 62

Users Guide

2.12.9. OCLinEcore Options
The options for the OCLinEcore editor.

OCLinEcore L= -

Configure the OCLinEcore editing options.

Prefemed executor requested for OCL constraints. o -
J http:/Awenw eclipse org/emf/2002/Ecore/OCL defers the choice till untime. p.w\c\'\c\ 'EC"DSE'D@EUW J
Titp /| org/emf /2002 Ecore/OC

i = Iitp /v oclipse org/emf,/2002/Ecore/OCL/LPG
“UML Binding bitp-//wrww eclipse. org/emf,/2002/Ecors/OCL/Pivot

-- Papyrus -
:[o | LlJ Restore Defaults | HApphy |
@) cwed_|

OCL embedded in Ecore can be executed with either the Classic evaluator or the new Pivot evaluator
depending on the URI used to define the embedded EAnnotations. This preference determines the URI
written to Ecore files when no URI was previously in use.

Selecting ht t p: / / www. ecl i pse. or g/ enf/ 2002/ Ecor e/ OCL makes no choice and so defers
to the user’ s run-time delegation choice.

Selecting ht t p: / / www. ecl i pse. or g/ enf/ 2002/ Ecor e/ OCL/ Pi vot is recommended since
the OCLinEcore editor and Pivot eval uator both usethe Xtext parser. Thisshould avoid problemswhereby
not all facilities of the new Pivot grammar are supported by the Classic grammic or LPG eva uator.

Selecting htt p://wwmv. ecl i pse. org/ enf/ 2002/ Ecore/ OCL/ LPG may be appropriate if
evaluation using the classic L PG evaluator isimportant.

Eclipse OCL 5.0 63

Chapter 3. The OCL Standard Library

3.1.

This documentation on the OCL Standard Library is auto-generated from the
org.eclipse.ocl.examples.library/model/OCL-2.5.oclstdlib that defines the behaviour of the Pivot
evaluator and the Xtext editors. Itissimilar to the OCL 2.4 functionality. It isaprototype of functionality
for OCL 2.5 where the use of models may eliminate ambiguities.

The library support for the Ecore and UML bindings in Luna has been upgraded so that the available
operations are similar to those documented here for the Pivot binding.

Precedences

3.2.

NAVI GATI ON > UNARY > MULTI PLI CATI VE > ADDI Tl VE > RELATI ONAL > EQUALI TY > AND
>COR>XOR>1| MPLI ES

Bag(T)

A bag isacollection with duplicates allowed. That is, one object can be an element of abag many times.
Thereis no ordering defined on the elementsin abag. Bag isitself an instance of the metatype BagType.

conformsTo Col | ecti on(T)

Operations

=(object2 : Ccl Self) : Bool ean precedence: EQUALI TY

Trueif sel f and bag contain the same el ements, the same number of times.
<>(object2 : Ccl Self) : Bool ean precedence: EQUALI TY

excl udi ng(object : Ccl Any[?]) : Bag(T)

The bag containing all elements of sel f apart from all occurrences of object.
excl udi ngAl | (objects : Collection(Ccl Any)) : Bag(T)

The bag containing all elements of sel f apart from all occurrences of all objects.
flatten(T2)() : Bag(T2)

Redefines the Collection operation. If the element type is not a collection type, this results in the same
bag assel f . If the element typeis a collection type, the result is the bag containing all the elements of
al the recursively flattened elements of sel f .

i ncludi ng(object : T[?]) : Bag(T)

The bag containing all elements of sel f plus object.

i ncludi ngAl'l (objects : Collection(T)) : Bag(T)

The bag containing all elements of sel f and objects.

sel ect ByKi nd(TT) (type : Metaclass(TT)) : Bag(TT)

sel ect ByType(TT) (type : Metaclass(TT)) : Bag(TT)

Iterations

closure(i : T | lanbda : Lanbda T() : Set(T)) : Set(T)

The closure of applying body transitively to every distinct element of the source collection.
collect(V)(i : T[?] | lanmbda : Lanbda T() : V[?]) : Bag(V)
collectNested(V)(i : T[?] | lanbda : Lanmbda T() : V[?]) : Bag(V)

The Bag of elements which results from applying body to every member of the source nonordered
collection.

reject(i : T[?] | lanbda : Lanbda T() : Bool ean) : Bag(T)
The sub-bag of the source bag for which body isf al se.
self->reject(iterator | body) = self->select(iterator | not body)

select(i : T[?] | lanmbda : Lanbda T() : Boolean) : Bag(T)

Eclipse OCL 5.0 64

The OCL Standard Library

3.3.

The sub-bag of the source bag for which body ist r ue.

sel f->select(iterator | body) =
self->iterate(iterator; result : Bag(T) = Bag{}
if body then result->including(iterator)

el se result

endi f)

sortedBy(i : T[?] | lanbda : Lanbda T() : Ccl Any) : Sequence(T)

Resultsin the Sequence containing all elements of the source collection. The element for which body has
thelowest value comesfirst, and so on. Thetype of thebody expression must havethe < operation defined.
The < operation must return a Boolean value and must be transitive (i.e., if a<band b < cthena<c).

Bool ean

The standard type Boolean represents the common true/fal se values. Boolean isitself an instance of the
metatype PrimitiveType (from UML).

conformsTo Ccl Any

Operations

=(object2 : Ccl Self) : Bool ean precedence: EQUALI TY

Returnst r ue if thelogical valueof sel f isthe sameasthe numeric value of object2, f al se otherwise.
<>(object2 : Ccl Self) : Bool ean precedence: EQUALI TY

Returns t r ue if the logical value of sel f isthe not same as the numeric value of object?, f al se
otherwise.

al I I nstances() : Set(Ccl Sel f)
Returns Set { f al se, true}.
and(b : Boolean[?]) : Boolean[?] invalidating validating precedence: AND

fal seifethersel f orbisf al se.Otherwisei nval i dif eithersel f orbisi nval i d.Otherwise
nul | if either sel f orbisnul | . Otherwiset r ue.

body: if self.ocllslnvalid() then
if b.ocllslnvalid() then self
else if b = false then fal se
el se self
endi f endif
else if self = false then fal se
else if b.ocllslnvalid() then b
else if b = false then fal se
else if self = null then nul
else if b = null then nul

el se true

endif endif endif endif endif endif
inmplies(b : Boolean[?]) : Boolean[?] invalidating validating precedence:
| MPLI ES

true if sel f isfal se, orif b istrue. Otherwisei nval i d if either sel f or b isi nval i d.
Otherwisenul | if either sel f orbisnul | . Otherwisef al se.

body: if self.ocllslnvalid() then
if b.ocllslnvalid() then self
else if b = true then true
el se self
endi f endif
else if self = false then true
else if b.ocllslnvalid() then b
else if b = true then true
else if self = null then nul
else if b =null then b
el se fal se
endif endif endif endif endif endif

Eclipse OCL 5.0 65

The OCL Standard Library

3.4.

not () : Bool ean[?] precedence: UNARY
trueifsel f isfal se.fal seifself istrue.null ifsel f isnul|.Otherwisei nval i d.

body: if self.ocllslnvalid() then self
else if self = null then nul
el se self = fal se
endi f endif

or(b : Boolean[?]) : Boolean[?] invalidating validating precedence: OR

true if either sel f or b ist rue. Otherwisei nval i d if either sel f or b isi nval i d. Otherwise
nul | if either sel f orbisnul | . Otherwisef al se.

body: if self.ocllslnvalid() then
if b.ocllslnvalid() then self
else if b = true then true
el se sel f
endi f endif
else if self = true then true
else if b.ocllslnvalid() then b
else if b = true then true
else if self = null then nul
else if b = null then nul
el se fal se
endif endif endif endif endif endif

toString() : String
Convertssel f toastring value.
xor(b : Boolean[?]) : Bool ean[?] precedence: XOR

trueifsel f istrueandbisfal se,orifsel f isfal seandbistrue.fal seifsel f istrue
andbistrue,orif self isfal se andb isfal se. Otherwisei nval i d if either sel f or b is
i nval i d. Otherwisenul | .
body: if self = null then nul

else if b = null then nul

else self <> b

endi f endif

Cl ass

3.5.

conformsTo _Ccl Any

Col l ection(T)

Coallection isthe abstract supertype of al collection typesin the OCL Standard Library. Each occurrence
of an object in a collection is called an element. If an object occurs twice in a collection, there are two
elements.

This sub clause defines the properties on Collections that have identical semantics for all collection
subtypes. Some operations may be defined within the subtype as well, which means that there is an
additional postcondition or amore specialized return value. Collectionisitself aninstance of the metatype
CollectionType.

The definition of several common operations is different for each subtype. These operations are not
mentioned in this sub clause.

The semantics of the collection operationsis given in the form of a postcondition that usesthe IterateExp
of the IteratorExp construct. The semantics of those constructs is defined in Clause 10 (*Semantics
Described using UML"). In several cases the postcondition refers to other collection operations, which
in turn are defined in terms of the IterateExp or IteratorExp constructs.

Well-formedness rules
A collection cannot containi nval i d values.context Collection inv: self->forAll(not ocllsinvalid())

conformsTo Ccl Any
Attributes

Eclipse OCL 5.0 66

The OCL Standard Library

elenent Type : T

Evaluates to the type of the collection elements.

| ower : Integer

Evauates to the lower bound on the number of collection elements.
upper : | nteger

Evaluates to the upper bound on the number of collection elements.
Operations

=(object2 : Ccl Self) : Bool ean precedence: EQUALI TY

Trueif cisacollection of the samekind assel f and contains the same elements in the same quantities
and in the same order, in the case of an ordered collection type.

<>(object2 : Ccl Self) : Bool ean precedence: EQUALI TY
Trueif cisnot equal tosel f .

asBag() : Bag(T)

The Bag that contains all the elementsfrom sel f .

asOrderedSet () : OrderedSet(T)

An OrderedSet that contains all the elementsfrom sel f , with duplicatesremoved, in an order dependent
on the particular concrete collection type.

asSequence() : Sequence(T)

A Sequence that contains all the elements from sel f, in an order dependent on the particular concrete
collection type.

asSet () : Set(T)

The Set containing al the elements from sel f , with duplicates removed.

count (object : Ocl Any[?]) : Integer

The number of times that object occursin the collection sel f .

excl udes(object : Ocl Any[?]) : Bool ean

Trueif object isnot an element of sel f , f al se otherwise.

excludesAl I (T2)(c2 : Collection(T2)) : Bool ean

Doessel f contain none of the elements of c2 ?

excl udi ng(object : Ccl Any[?]) : Collection(T)

The collection containing al elements of sel f apart from object.

excludi ngAl | (objects : Collection(Ccl Any)) : Collection(T)
The collection containing al elements of sel f apart from all occurrences of all objects.
flatten(T2)() : Collection(T2)

If the element typeisnot acollection type, thisresultsin the same collection assel f . If the element type
is a collection type, the result is a collection containing all the elements of all the recursively flattened
elementsof sel f .

i ncl udes(object : Ccl Any[?]) : Bool ean

Trueif object isan element of sel f, f al se otherwise.

i ncludesAll (T2)(c2 : Collection(T2)) : Bool ean
Doessel f contain al the elements of c2 ?

i ncludi ng(object : T[?]) : Collection(T)

The collection containing al elements of sel f plus object.

i ncl udi ngAl'l (obj ects : Collection(T)) : Collection(T)
The collection containing all elements of sel f and objects.
intersection(c : Collection(T)) : Bag(T)

Eclipse OCL 5.0 67

The OCL Standard Library

Theintersection of sel f and bag; the bag of al elementsthat arein both sel f and c.
intersection(u : UniqueCollection(T)) : Set(T)

Theintersection of sel f and aunique collection; the set of all elementsthat arein both sel f and u.
i sSEmpty() : Bool ean

Issel f the empty collection?

Note: nul | - >i sEnpt y() returnst r ue in virtue of theimplicit casting fromnul | toBag{}.
max() : T

The element with the maximum value of all elementsin sel f . Elements must be of atype supporting
the max operation. The max operation — supported by the elements — must take one parameter of type T
and be both associative and commutative. UnlimitedNatural, Integer and Real fulfill this condition.

mn() : T
The element with the minimum value of all elementsin sel f . Elements must be of a type supporting

the min operation. The min operation — supported by the elements — must take one parameter of type T
and be both associative and commutative. UnlimitedNatural, Integer and Real fulfill this condition.

not Enpty() : Bool ean
Issel f not the empty collection?
nul | - >not Enpt y() returnsf al se invirtue of theimplicit casting fromnul | toBag{}.

product (T2)(c2 : Collection(T2)) : Set(Tuple(Tuple(first : T, second :
T2)::first : T, Tuple(first : T, second : T2)::second : T2))

The cartesian product operation of sel f and c2.

sel ect ByKi nd(TT) (type : Metaclass(TT)) : Collection(TT)

sel ect ByType(TT) (type : Metaclass(TT)) : Collection(TT)

size() : Integer

The number of elementsin the collection sel f .

sum() @ T

The addition of all elementsinsel f . Elements must be of an Ccl Sunmabl e typeto provide the zero()

and sum() operations. The sum operation must be both associative: a.sum(b).sum© = a.sum(b.sum®),
and commutative: a.sum(b) = b.sum(a). UnlimitedNatural, Integer and Real fulfill this condition.

If the sum operation is not both associative and commutative, the sum expression is not well-formed,
which may result in unpredictable results during evaluation. If an implementation is able to detect alack
of associativity or commutativity, theimplementation may bypassthe evaluation and returnani nval i d
result.

union(c : Collection(T)) : Bag(T)

The bag consisting of all elementsinsel f and al elementsin c.

Iterations

any(i : T[?] | lanbda : Lanbda T() : Boolean) : T[?]

Returns any element in the source collection for which body evaluatestot r ue. If thereis more than one
element for which body ist r ue, one of them is returned. There must be at least one element fulfilling
body, otherwise the result of this IteratorExpisnul | .

collect(V)(i : T[?] | lanbda : Lanbda T() : V[?]) : Collection(V)

The Collection of elements that results from applying body to every member of the source set. The result
is flattened. Notice that this is based on collectNested, which can be of different type depending on the
type of source. collectNested is defined individually for each subclass of CollectionType.

collectNested(V)(i : T[?] | |anbda : Lanbda T() : V[?]) : Collection(V)
The Collection of elements which results from applying body to every member of the source collection.
exists(i : T[?] | lanmbda : Lanmbda T() : Boolean[?]) : Bool ean[?]
Resultsint r ue if body evaluatestot r ue for at least one element in the source collection.

Eclipse OCL 5.0 68

The OCL Standard Library

3.6.

exists(i : T[?], j : T[?] | lanbda : Lanbda T() : Boolean[?])
Bool ean[?]

forAll (i : T[?] | lanbda : Lanbda T() : Boolean[?]) : Bool ean[?]

Resultsin t r ue if the body expression evaluates to t r ue for each element in the source collection;
otherwise, resultisf al se.

forAll (i : T[?], j : T[?] | lanbda : Lanbda T() : Boolean[?])
Bool ean[?]

isUnique(i : T[?] | lanbda : Lanbda T() : Ocl Any[?]) : Bool ean

Resultsint r ue if body evaluatesto adifferent valuefor each element in the source coll ection; otherwise,
resultisf al se.

iterate(Tacc) (i : T[?]acc : ; Tacc[?] | | anbda : Lanbda T() : Tacc[?]) :
Tacc[?]

one(i : T[?] | lanbda : Lanbda T() : Bool ean) : Bool ean

Resultsint r ue if there is exactly one element in the source collection for which body ist r ue.
reject(i : T[?] | lanbda : Lambda T() : Boolean) : Collection(T)
The sub-collection of the source collection for which body isf al se.

select(i : T[?] | lanbda : Lanbda T() : Boolean) : Collection(T)
The sub-collection of the source collection for which body ist r ue.

sortedBy(i : T[?] | lanbda : Lanbda T() : Ccl Any) : Sequence(T)

Results in the Collection containing all elements of the source collection. The element for which body
has the lowest value comes first, and so on. The type of the body expression must have the < operation
defined. The < operation must return a Boolean value and must be transitive (i.e, if a<band b < c
thena<c).

Enuner ati on

3.7.

The Enumeration type is the type of an OrderedSet of EnumerationLiteral.
conformsTo Ccl Any

Attributes

allLiterals : OrderedSet (EnumerationLiteral)
Evauatesto the literals of the enumeration.

Operations

all I nstances() : Set(Ccl Sel f)

Return a set of al enumeration values of sel f.

Enuner ati onLi t er al

3.8.

The standard type EnumerationLiteral represents a named constant value of an Enumeration.
conformsTo _Ccl Any

Attributes

Enunerati on : Bag(Enunerati on)

| nt eger

The standard type Integer represents the mathematical concept of integer. Note that UnlimitedNatural is
asubclass of Integer, so for each parameter of type Integer, you can use an unlimited natural asthe actual
parameter. Integer isitself an instance of the metatype PrimitiveType (from UML).

conformsTo _Real
Operations
-() : Integer precedence: UNARY

Eclipse OCL 5.0 69

The OCL Standard Library

The negative value of sel f .
+(i : CclSelf) : Integer precedence: ADDI Tl VE
The value of the addition of sel f andi.

-(i : CclsSelf) : Integer precedence: ADDI Tl VE
The value of the subtraction of i fromsel f.
*(i : CclSelf) : Integer precedence: MULTI PLI CATI VE

The value of the multiplication of sel f andi.

/(i : CclSelf) : Real precedence MULTI PLI CATI VE
Thevalue of sel f divided by i. Evaluatestoi nval i d if risegual to zero.
abs() : Integer

The absolute value of sel f .

conpareTo(that : Ccl Self) : Integer

The comparison of sel f witht hat . -veif lessthan, O if equal, +veif greater than.
div(i : Integer) : Integer

The number of timesthat i fits completely withinsel f .

nod(i : Integer) : Integer

Theresultissel f moduloi.

max(i : Ccl Self) : Integer

The maximum of sel f ani.

mn(i : OlSelf) : Integer

The minimum of sel f ani.

toString() : String

Convertssel f toastring value.

3.9. Metaclass(T)

conformsTo O ass, Ccl Type
Attributes
i nstanceType : T

Evaluates to the type of instances.

3.10. Ccl Any

All typesin the UML model and the primitive and collection typesin the OCL standard library conforms
to the type OclAny. Conceptually, OclAny behaves as a supertype for all the types. Features of OclAny
areavailableon each objectinall OCL expressions. OclAny isitself aninstance of the metatype Any Type.

All classesin aUML model inherit all operations defined on OclAny. To avoid name conflicts between
propertiesin the model and the propertiesinherited from OclAny, all names on the properties of OclAny
start with ‘ocl.” Although theoretically there may still be name conflicts, they can be avoided. One can
also use qualification by OclAny (name of the type) to explicitly refer to the OclAny properties.

Operations of OclAny, where the instance of OclAny is called object.
Operations

=(object2 : Ccl Sel f) : Bool ean precedence: EQUALI TY
Trueif sel f isthe same object as object2. Infix operator.

post: result = self = object2

<>(object2 : Ccl Self) : Bool ean precedence: EQUALI TY
Trueif sel f isadifferent object from object2. Infix operator.

Eclipse OCL 5.0 70

The OCL Standard Library

post: result = not (self = object?2)

ocl AsSet () : Set(Ccl Sel f)
Returns a Set with sel f asthe sole content, unlesssel f isnul | inwhich case returns an empty set,
ocl AsType(TT) (type : Metaclass(TT)) : TI[?]

Evaluatestosel f ,wheresel f isof thetypeidentified by T. Thetype T may beany classifier definedin
the UML model; if the actual type of sel f at evaluation time does not conformto T, then the oclAsType
operation evaluatestoi nval i d.

In the case of feature redefinition, casting an object to a supertype of its actual type does not access the
supertype’s definition of the feature; according to the semantics of redefinition, the redefined feature
simply does not exist for the object. However, when casting to a supertype, any features additionally
defined by the subtype are suppressed.

post IsSelf: result = self

post IsType: result.ocll|sKindO(type)

ocllIsInState(statespec : Ccl State) : Bool ean
Evaluatestot r ue if thesel f isinthe state indentified by statespec.
ocllslnvalid() : Boolean validating

Evaluatestot r ue if thesel f isequal to Oclinvalid.

post: result = self.ocllsTypeO (Ccllnvalid)

oclIskKindOF (T)(type : Metaclass(T)) : Bool ean
Evaluatestot r ue if thetypeof sel f conformstot. Thatis, sel f isof typet or asubtype of t.
ocl I sNew() : Bool ean

Can only be used in a postcondition. Evaluatesto t r ue if the sel f is created during performing the
operation (for instance, it didn’t exist at precondition time).

ocl I sTypeOr (T)(type : Metaclass(T)) : Bool ean

Evaluatestot r ue if sel f isof thetypet but not a subtype of t

ocl I sUndefined() : Bool ean validating

Evaluatestot r ue if thesel f isequa toi nval i d or equal tonul | .

post: result = self.ocl|sTypeO (Ccl Void) or self.ocllsTypeO (Ccllnvalid)

oclLog() : Ccl Sel f
Evaluatesto the self, with the side effect of generating alog message comprising self.
ocl Log(nessage : String) : Ccl Sel f

Evaluates to the self, with the side effect of generating alog message comprising message followed by
self.

ocl Type() : Metacl ass(Ccl Sel f)
Evaluatesto the type of which sel f isan instance.
toString() : String

Returns a string representation of sel f .

3.11. Ccl Conpar abl e

The type OclComparable defines the compareTo operation used by the sortedBy iteration. Only types
that provide a derived compareTo implementation may be sorted.

conformsTo _Ccl Any

Operations

conpareTo(that : Ccl Self) : Integer

Return -ve, 0, +ve according to whether self islessthan, equal to, or greater than that.

Eclipse OCL 5.0 71

The OCL Standard Library

The compareTo operation should be commutative.

>(that : Ccl Sel f) : Bool ean precedence: RELATI ONAL
Trueif sel f isgreater thant hat .

<(that : Ccl Self) : Bool ean precedence: RELATI ONAL
Trueif sel f islessthant hat .

<=(that : Ccl Self) : Bool ean precedence: RELATI ONAL
Trueif sel f islessthan or equal tot hat .

>=(that : Ccl Self) : Bool ean precedence: RELATI ONAL
Trueif sel f isgreater than or equal tot hat .

3.12. Ccl El enent

The type OclElement is the implicit supertype of any user-defined type that has no explicit supertypes.
Operations defined for OclElement are therefore applicable to all user-defined types.

conformsTo Ccl Any

Operations

al I I nstances() : Set(Ccl Sel f)

Return a set of al instances of the type and derived types of self.

ocl Contai ner() : Ccl El ement[?]

Returns the object for which self is a composed content or null if there is no such object.
ocl Contents() : Set(Ccl El ement)

Returns the composed contents of self.

3.13. Cllnvalid

The type OclIinvaid is a type that conforms to al other types. It has one single instance, identified
asinvalid. Any property cal applied on invalid results in i nval i d, except for the operations
ocllsUndefined() and ocllsinvalid(). Oclinvaid isitself an instance of the metatype InvalidType.

conformsTo Ccl Voi d

Operations

al I I nstances() : Set(Ccl Sel f)

Returnsi nval i d.

=(object2 : Ccl Sel f) : Bool ean precedence: EQUALI TY

Returnsi nval i d.

<>(object2 : Ccl Self) : Bool ean precedence: EQUALI TY

Returnsi nval i d.

and(b : Boolean[?]) : Boolean[?] validating precedence: AND
inmplies(b : Boolean[?]) : Boolean[?] validating precedence: | MPLI ES
or(b : Boolean[?]) : Bool ean[?] validating precedence: OR
ocl AsSet () : Set(Ccl Sel f)

ocl AsType(TT) (type : Metaclass(TT)) : TT

ocllslnvalid() : Boolean validating

oclIsKindOF (T) (type : Metaclass(T)) : Bool ean

ocl I sTypeOF (T)(type : Metaclass(T)) : Bool ean

ocl I sUndefined() : Bool ean validating

ocl Type() : Metacl ass(Ccl Sel f)

toString() : String

Eclipse OCL 5.0 72

The OCL Standard Library

Returns ‘invaid'.

3.14. Ccl Lanbda

Thetype OclLambdaistheimplicit supertypeof all Lambdatypes. The operationsdefined for OclLambda
therefore apply to al lambda expressions.

conformsTo _Ccl Any

3.15. Ccl Message

OclMessage This sub clause contains the definition of the standard type OclMessage. As defined in
this sub clause, each ocl message type is actually a template type with one parameter. ‘T’ denotes the
parameter. A concrete ocl message typeis created by substituting an operation or signal for the T.

The predefined type OclMessage is an instance of MessageType. Every OclMessageis fully determined
by either the operation, or signal given asparameter. Notethat thereis conceptually an undefined (infinite)
number of thesetypes, as each is determined by a different operation or signal. These types are unnamed.
Every type has as attributes the name of the operation or signal, and either all formal parameters of the
operation, or all attributes of the signal. OclMessage isitself an instance of the metatype MessageType.

OclMessage has a number of predefined operations, as shown in the OCL Standard Library.
conformsTo Ccl Any

Operations

hasRet urned() : Bool ean

Trueif type of template parameter isan operation call, and the called operation hasreturned avalue. This
implies the fact that the message has been sent. Falsein all other cases.

result() : Ccl Any

Returnstheresult of the called operation, if type of template parameter is an operation call, and the called
operation has returned avalue. Otherwise thei nval i d vaueis returned.

i sOperationCall () : Bool ean

Returnst r ue if the OclM essage represents the sending of a UML Operation call.
i sSi gnal Sent () : Bool ean

Returnst r ue if the OclM essage represents the sending of aUML Signal.

3.16. Ccl Sel f

The pseudo-type OclSelf denotes the statically determinate type of sel f in Operation and Iteration
signatures. Instances of OclSelf are never created.

conformsTo Ccl Any

3.17. Ccl State

conformsTo _Ccl Any

3.18. Ccl Summabl e

The type OclSummabl e defines the sum and zero operations used by the Collection::sum iteration. Only
types that provide derived sum and zero implementations may be summed.

conformsTo Ccl Any

Operations

sum(that : Ccl Self) : Ccl Sel f
Return the sum of self and that.

The sum operation should be associative.
zero() : Ccl Sel f

Eclipse OCL 5.0 73

The OCL Standard Library

Return the ‘zero’ value of sdlf to initialize a summation.
zero().sum(self) = self.

3.19. Ccl Tupl e

The type OclTuple is the implicit supertype of al Tuple types. The operations defined for OclTuple
therefore apply to al tuples.

conformsTo Ccl Any

Operations

=(object2 : Ccl Self) : Bool ean precedence: EQUALI TY
<>(object2 : Ccl Self) : Bool ean precedence: EQUALI TY

3.20. Ccl Type

The type OclType is the implicit supertype of any UML type. Operations defined for OclType are
therefore applicable to all UML types.

conformsTo Ccl El enent

Operations
conformsTo(type2 : Ccl Type) : Bool ean
Returnstrueif type2 conforms to self.

3.21. Ccl Voi d

Thetype OclVoid is atype that conformsto all other types except Oclinvalid. It has one single instance,
identified as nul | , that corresponds with the UML LiteralNull value specification. Any property call
applied on nul | resultsini nval i d, except for the oclisUndefined(), oclisinvalid(), =(OclAny) and
<>(OclAny) operations. However, by virtue of theimplicit conversionto acollectionliteral, an expression
evaluating to nul | can be used as source of collection operations (such as ‘isEmpty’). If the source is
thenul | literd, itisimplicitly converted to Bag{}.

OclVoidisitself an instance of the metatype VoidType.
conformsTo Ccl Any

Operations

all I nstances() : Set(Ccl Sel f)

ReturnsSet { nul | }.

=(object2 : Ccl Self) : Bool ean precedence: EQUALI TY

Redefines the OclAny operation, returning t r ue if object isnul | , i nval i d if objectisi nval i d,
f al se otherwise.

<>(object2 : Ccl Self) : Bool ean precedence: EQUALI TY
and(b : Boolean[?]) : Bool ean[?] precedence: AND
implies(b : Boolean[?]) : Bool ean[?] precedence: | MPLI ES
or(b : Boolean[?]) : Bool ean[?] precedence: OR
ocllslnvalid() : Boolean validating

ocl I sUndefined() : Bool ean validating

toString() : String

Returnsnul | .

3.22. OrderedColl ection(T)

The OrderedCollection type providesthe shared functionality of the OrderedSet and Sequence collections
for which the elements are ordered. The common supertype of OrderedCollection is Collection.

Eclipse OCL 5.0 74

The OCL Standard Library

conformsTo Col | ecti on(T)

Operations

at(index : Integer) : T[?] invalidating
Thei-th element of ordered collection.

first() : T[?] invalidating

Thefirst elementinsel f .

i ndexOf (obj : Ccl Any[?]) : Integer
Theindex of object obj in the ordered collection.

last() : T[?] invalidating

Thelast elementinsel f .

3.23. OrderedSet (T)

The OrderedSet is a Set, the elements of which are ordered. It contains no duplicates. OrderedSet isitself
an instance of the metatype OrderedSetType. An OrderedSet is not a subtype of Set, neither a subtype of
Sequence. The common supertype of Sets and OrderedSetsis Collection.

conformsTo Or der edCol | ecti on(T) , Uni queCol | ecti on(T)

Operations

=(object2 : Ccl Self) : Bool ean precedence: EQUALI TY

<>(object2 : Ccl Self) : Bool ean precedence: EQUALI TY

-(s : UniqueCollection(Ccl Any)) : O deredSet (T) precedence: ADDI Tl VE
The elements of sel f, whicharenotins.

append(object : T[?]) : OrderedSet(T)

The set of elements, consisting of all elements of sel f, followed by object.

appendAl | (objects : OrderedCollection(T)) : OderedSet(T)

The set of elements, consisting of all elementsof sel f, followed by objects.

excl udi ng(object : Ccl Any[?]) : OrderedSet(T)

The ordered set containing all elementsof sel f apart from object.

The order of the remaining elements is not changed.

excl udi ngAl | (objects : Collection(Ccl Any)) : OrderedSet(T)
The ordered set containing al elements of sel f apart from all occurrences of al objects.
flatten(T2)() : OrderedSet(T2)

i ncludi ng(object : T[?]) : OderedSet(T)

The ordered set containing all elements of sel f plus object added as the last element if not already
present.

insertAt(index : Integer, object : T[?]) : OderedSet(T) invalidating
The ordered set consisting of sel f with object present at position index.

prepend(object : T[?]) : OrderedSet(T)

The sequence consisting of object, followed by al elementsinsel f .

post IsAtStart: result->at(1l) = object

post 1sShiftedAl ong: Sequence{l..self->size()}->forAll(index | self->at(index) = result->al
post |sSizePlusOne: result->size() = self->size() + 1

prependAl | (objects : O deredCollection(T)) : OderedSet(T)

The segquence consisting of objects, followed by all elementsinsel f .

reverse() : OrderedSet(T)
The ordered set of elements with same elements but with the opposite order.

Eclipse OCL 5.0 75

The OCL Standard Library

sel ect ByKi nd(TT) (type : Metaclass(TT)) : O deredSet (TT)
sel ect ByType(TT) (type : Metaclass(TT)) : O deredSet(TT)

subOrderedSet (lower : Integer, wupper : |Integer) : OderedSet(T)
i nval i dating

The sub-set of sel f starting at number lower, up to and including element number upper.

Iterations

closure(i : T | lanmbda : Lanbda T() : OrderedSet(T)) : OderedSet(T)
The closure of applying body transitively to every distinct element of the source collection.
collect(V)(i : T[?] | lanmbda : Lanbda T() : V[?]) : Sequence(V)
collectNested(V)(i : T[?] | lanbda : Lanbda T() : V[?]) : Sequence(V)

The sequence of elements that results from applying body to every member of the source ordered
collection.

reject(i : T[?] | |anbda : Lanmbda T() : Boolean) : OrderedSet(T)
The ordered set of the source ordered set for which body isf al se.

select(i : T[?] | lanbda : Lanbda T() : Boolean) : OderedSet(T)
The ordered set of the source ordered set for which body ist r ue

sortedBy(i : T[?] | lanbda : Lanbda T() : Ccl Any) : O deredSet (T)

Results in the ordered set containing all elements of the source collection. The element for which body
has the lowest value comes first, and so on. The type of the body expression must have the < operation
defined. The < operation must return a Boolean value and must be transitive (i.e.,, if a<band b < c,
thena<c).

3.24. Real

The standard type Real represents the mathematical concept of real. Note that UnlimitedNatura is a
subclass of Integer and that Integer is a subclass of Real, so for each parameter of type Real, you can
use an unlimited natural or an integer as the actual parameter. Real isitself an instance of the metatype
PrimitiveType (from UML).

conformsTo Ccl Conpar abl e, Ocl Summabl e
Operations
=(object2 : Ccl Self) : Bool ean precedence: EQUALI TY

Returns t r ue if the numeric value of sel f is the same as the numeric value of object?, f al se
otherwise.

<>(object2 : Ccl Self) : Bool ean precedence: EQUALI TY

Returnst r ue if the numeric value of sel f isthe not the same as the numeric value of object2, f al se
otherwise.

+(r : CclSelf) : Real precedence: ADDI Tl VE

The value of the addition of sel f andr.

-(r : Ccl Self) : Real precedence: ADDI Tl VE

The value of the subtraction of r fromsel f .

*(r : CclSelf) : Real precedence: MULTI PLI CATI VE
The value of the multiplication of sel f andr.

-() : Real precedence: UNARY

The negative value of sel f .

/(r : Ccl Self) : Real precedence: MULTI PLI CATI VE
Thevalue of sel f divided by r. Evaluatestoi nval i d if risequal to zero.
>(r : CclSelf) : Bool ean precedence: RELATI ONAL
Trueif sel f isgreater thanr.

Eclipse OCL 5.0 76

The OCL Standard Library

<(r : Ccl Self) : Bool ean precedence: RELATI ONAL

Trueif sel f islessthanr.

<=(r : Ccl Sel f) : Bool ean precedence: RELATI ONAL

Trueif sel f islessthan or equal tor.

>=(r : Ccl Sel f) : Bool ean precedence: RELATI ONAL

Trueif sel f isgreater than or equal tor.

abs() : Real

The absolute value of sel f .

conpareTo(that : Ccl Self) : Integer

The comparison of sel f witht hat . -veif lessthan, O if equal, +veif greater than.
floor() : Integer

Thelargest integer that islessthan or equal to sel f .

max(r : Ccl Self) : Real

The maximum of sel f andr.

mn(r : CclSelf) : Real

The minimum of sel f andr.

round() : Integer

Theinteger that is closest to sel f . When there are two such integers, the largest one.
toString() : String

Convertssel f toastring value.

3.25. Sequence(T)

A sequence is a collection where the elements are ordered. An element may be part of a sequence more
than once. Sequenceisitself an instance of the metatype SequenceType. A Sentence is hot a subtype of
Bag. The common supertype of Sentence and Bags is Collection.

conformsTo Or der edCol | ecti on(T)

Operations

=(object2 : Ccl Self) : Bool ean precedence: EQUALI TY
Trueif sel f contains the same elements as sin the same order.
<>(object2 : Ccl Self) : Bool ean precedence: EQUALI TY
append(object : T[?]) : Sequence(T)

The sequence of elements, consisting of all elements of sel f , followed by object.
appendAl | (objects : OderedCollection(T)) : Sequence(T)

The sequence of elements, consisting of all elements of sel f , followed by objects.
excl udi ng(object : Ccl Any[?]) : Sequence(T)

The sequence containing al elements of sel f apart from al occurrences of object.
The order of the remaining elements is not changed.

excl udi ngAl | (objects : Collection(Ccl Any)) : Sequence(T)
The sequence containing all elements of sel f apart from all occurrences of al objects.
flatten(T2)() : Sequence(T2)

Redefines the Collection operation. If the element type is not a collection type, this results in the same
sequence as sel f . If the element type is a collection type, the result is the sequence containing all the
elements of all the recursively flattened elements of sel f . The order of the elementsis partial.

i ncluding(object : T[?]) : Sequence(T)
The sequence containing all elements of sel f plus object added as the last element.

Eclipse OCL 5.0 "

The OCL Standard Library

insertAt(index : Integer, object : T[?]) : Sequence(T) invalidating
The sequence consisting of sel f with object inserted at position index.

prepend(object : T[?]) : Sequence(T)

The sequence consisting of object, followed by all elementsinsel f.

prependAl | (objects : OrderedCollection(T)) : Sequence(T)

The sequence consisting of objects, followed by all elementsinsel f.

reverse() : Sequence(T)

The sequence containing the same elements but with the opposite order.

sel ect ByKi nd(TT) (type : Metaclass(TT)) : Sequence(TT)

sel ect ByType(TT) (type : Metaclass(TT)) : Sequence(TT)

subSequence(l ower I nt eger, upper I nt eger) : Sequence(T)
i nval i dati ng

The sub-sequence of sel f starting at number lower, up to and including element number upper.
Iterations

closure(i : T | lanbda : Lanbda T() : OrderedSet(T)) : OderedSet(T)
The closure of applying body transitively to every distinct element of the source collection.
collect(V)(i : T[?] | lanbda : Lanbda T() : V[?]) : Sequence(V)
collectNested(V)(i : T[?] | lanbda : Lanmbda T() : V[?]) : Sequence(V)
The sequence of elements that results from applying body to every member of the source ordered

collection.

reject(i : T[?] | lanbda : Lanmbda T() : Bool ean) : Sequence(T)
The subseguence of the source sequence for which body isf al se.

select(i : T[?] | lanbda : Lanbda T() : Boolean) : Sequence(T)

The subseguence of the source sequence for which body ist r ue.
sortedBy(i : T[?] | lanbda : Lanbda T() : Ccl Any) : Sequence(T)

Resultsin the Sequence containing all elements of the source collection. The element for which body has
thelowest value comesfirst, and so on. Thetype of the body expression must havethe < operation defined.
The < operation must return a Boolean value and must be transitive (i.e., if a<band b < cthen a<c).

3.26. Set (T)

conformsTo Uni queCol | ecti on(T)

Operations

=(object2 : Ccl Sel f) : Bool ean precedence: EQUALI TY
Evaluatestot r ue if sel f and s contain the same elements.

<>(object2 : Ccl Self) : Bool ean precedence: EQUALI TY

-(s : UniqueCollection(Ccl Any)) : Set(T) precedence: ADDI Tl VE
The elementsof sel f, whicharenotins.

excl udi ng(object : Ccl Any[?]) : Set(T)

The set containing all elements of sel f without object.

excl udi ngAl | (objects : Collection(Ccl Any)) : Set(T)

The set containing all elements of sel f apart from all occurrences of all objects.
flatten(T2)() : Set(T2)

Redefines the Collection operation. If the element type is not a collection type, this results in the same
set assel f . If the element type is a collection type, the result is the set containing all the elements of
all the recursively flattened elements of sel f.

i ncluding(object : T[?]) : Set(T)

Eclipse OCL 5.0 78

The OCL Standard Library

The set containing all elements of sel f plus object.

i ncludi ngAl'l (objects : Collection(T)) : Set(T)

The set containing all elements of sel f and objects.

sel ect ByKi nd(TT) (type : Metaclass(TT)) : Set(TT)

sel ect ByType(TT) (type : Metaclass(TT)) : Set(TT)

Iterations

closure(i : T | lanbda : Lanbda T() : Set(T)) : Set(T)

The closure of applying body transitively to every distinct element of the source collection.
collect(V)(i : T[?] | lanbda : Lanbda T() : V[?]) : Bag(V)

col lectNested(V)(i : T[?] | lanbda : Lanbda T() : V[?]) : Bag(V)
The Bag of elements which results from applying body to every member of the source nonordered

collection.

reject(i : T[?] | |anbda : Lanbda T() : Boolean) : Set(T)
The subset of the source set for which body isf al se.

select(i : T[?] | lanmbda : Lanbda T() : Boolean) : Set(T)

The subset of set for which expristr ue.
sortedBy(i : T[?] | lanbda : Lanbda T() : Ccl Any) : O deredSet (T)

Results in the ordered set containing all elements of the source collection. The element for which body
has the lowest value comes first, and so on. The type of the body expression must have the < operation
defined. The < operation must return a Boolean value and must be transitive (i.e, if a<band b < c,
thena<c).

3.27. State

conformsTo Ccl St at e

3.28. String

The standard type String represents strings, which can be both ASCII or Unicode. String is itself an
instance of the metatype PrimitiveType (from UML).

conformsTo Ccl Conpar abl e, Ccl Sunmmabl e

Operations

=(object2 : Ccl Self) : Bool ean precedence: EQUALI TY
<>(object2 : Ccl Self) : Bool ean precedence: EQUALI TY

+(s : String) : String precedence: ADDI Tl VE

The concatenation of sel f and s.

at(i : Integer) : String invalidating

Queriesthe character at positioniinsel f.

characters() : Sequence(String)

Obtains the characters of sel f as asequence.

conpareTo(that : Ccl Self) : Integer

The comparison of sel f witht hat . -veif lessthan, O if equal, +veif greater than.
concat(s : String) : String

The concatenation of sel f ands.

endsWth(s : String) : Bool ean

Returnstrueif sel f endswith the string s. Every string ends with the empty string.
equal sl gnoreCase(s : String) : Bool ean

Eclipse OCL 5.0 79

The OCL Standard Library

Querieswhether sand sel f are equivalent under case-insensitive collation.
indexOF (s : String) : Integer

Queriesthefirstindexinsel f at which sisasubstring of sel f , or zero if sisnot asubstring of sel f .
The empty string is asubstring of every string at index 1 (and also at all other indexes).

| astlndexCOf (s : String) : Integer

Queriesthelastinsel f at which sisasubstring of sel f, or zero if sisnot asubstring of sel f. The
empty string is a substring of every string at index sel f -size()+1 (and also at al other indexes).

mat ches(regex : String) : Bool ean

Use aregular expression match and return true if self matches regex, false otherwise.

repl aceAl l (regex : String, replacement : String) : String invalidating
Return a string derived from self by replacing all matches of regex by replacement.

repl aceFirst(regex : String, replacenent : String) : String
i nval i dati ng

Return a string derived from self by replacing the first match of regex by replacement.

size() : Integer

The number of charactersinsel f .

startsWth(s : String) : Bool ean

Returnstrueif sel f starts with the string s. Every string starts with the empty string.

substituteAl |l (ol dSubstring : String, newSubstring : String) : String
Return a string derived from self by replacing all occurrences of oldSubstring by newSubstring.
substituteFirst (ol dSubstring : String, newSubstring : String) : String

Return a string derived from self by replacing the first occurrence of oldSubstring by newSubstring.
Returnsinvalid if thereis no first occurrence.

substring(lower : Integer, upper : Integer) : String invalidating

The sub-string of sel f starting at character number lower, up to and including character number upper.
Character numbersrun from 1 to self.size().

t oBool ean() : Bool ean invalidating
Convertssel f to aboolean value.
tolnteger() : Integer invalidating
Convertssel f to an Integer value.

toLower () : String

This is a deprecated variant of toLowerCase() preserving compatibility with traditional Eclipse OCL
behaviour.

toLower Case() : String

Converts sel f to lower case, using the locale defined by looking up oclLocae in the current
environment. Otherwise, returnsthe same string assel f .

toReal () : Real invalidating
Convertssel f toaReal vaue.
toString() : String
Returnssel f.

toUpper () : String

This is a deprecated variant of toUpperCase() preserving compatibility with traditional Eclipse OCL
behaviour.

t oUpperCase() : String

Converts sel f to upper case, using the locale defined by looking up oclLocale in the current
environment. Otherwise, returnsthe same string assel f .

Eclipse OCL 5.0 80

The OCL Standard Library

t okeni ze() : Sequence(String)

Partition sel f into a sequence substrings separated by any of space, line-feed, carriage-return, form-
feed and horizontal-tab delimiters. The delimiters are omitted from the return.

tokeni ze(delimters : String) : Sequence(String)

Partition sel f into a sequence substrings separated by characters in the delimiters. The delimiters are
omitted from the return.

t okeni ze(delim ters : String, returnbDeliniters : Bool ean)
Sequence(String)

Partition sel f into a sequence substrings separated by charactersin the delimiters. If returnDelimeters
is true the returned sequence includes the delimiters, otherwise the delimiters are omitted.

trim) : String
Return sel f with leading and trailing whitespace removed.
>(s : Ccl Self) : Bool ean precedence: RELATI ONAL

True if sel f is greater than s, using the locale defined by looking up oclLocale in the current
environment.

<(s : Ccl Self) : Bool ean precedence: RELATI ONAL
Trueif sel f islessthan s, using the locale defined by looking up oclLocale in the current environment.
<=(s : Ccl Sel f) : Bool ean precedence: RELATI ONAL

Trueif sel f islessthan or equal to s, using the locale defined by looking up oclLocale in the current
environment.

>=(s : Ccl Sel f) : Bool ean precedence: RELATI ONAL

Trueif sel f isgreater than or equal to s, using the local e defined by looking up oclLocale in the current
environment.

3.29. Type

conformsTo _Ccl Type

3.30. Uni queCol | ection(T)

The UniqueCaollection type provides the shared functionality of the OrderedSet and Set collections for
which the elements are unique. The common supertype of UniqueCollection is Collection.

conformsTo Col | ecti on(T)

Operations

-(s : UniqueCollection(Ccl Any)) : UniqueCol |l ection(T) precedence: ADDI Tl VE
The elementsof sel f, whicharenotins.

intersection(c : Collection(T)) : Set(T)

Theintersection of sel f and c (i.e., the set of all elementsthat arein both sel f and ¢).
symmetricDi fference(s : UniqueCollection(CclAny)) : Set(T)

The set containing all the elementsthat arein sel f or s, but not in both.

union(s : UniqueCollection(T)) : Set(T)

The set consisting of al elementsinsel f and all elementsin s.

Iterations

sortedBy(i : T[?] | lanbda : Lanbda T() : Ccl Any) : OrderedSet (T)

Results in the ordered set containing all elements of the source collection. The element for which body
has the lowest value comes first, and so on. The type of the body expression must have the < operation
defined. The < operation must return a Boolean value and must be transitive (i.e, if a<band b <,
thena<c).

Eclipse OCL 5.0 81

The OCL Standard Library

3.31. UnlimtedNatural

The standard type UnlimitedNatural is used to encode the non-negative values of a multiplicity
specification. This includes a specia unlimited value (*) that encodes the upper value of a multiplicity
specification. UnlimitedNatural isitself an instance of the metatype UnlimitedNatural Type.

Note that although UnlimitedNatural is a subclass of Integer, the unlimited value cannot be represented
as an Integer. Any use of the unlimited value as an integer or real isreplaced by thei nval i d value.

conformsTo | nt eger
Operations
ocl AsType(TT) (type : Metaclass(TT)) : TT

Evauatestosel f,wheresel f isof thetypeidentified by T. Thetype T may be any classifier definedin
the UML model; if the actual typeof sel f at evaluation time does not conformto T, then the ocl AsType
operation evaluatestoi nval i d.

The standard behavior is redefined for UnlimitedNatural. Numeric values may be converted to Real or
Integer, but the unlimited value may not. Conversion of unlimited to Real or Integer returnsi nval i d.

Eclipse OCL 5.0 82

Chapter 4. Tutorials

The OCLinEcore tutorial shows how
 toinstall OCL and the additional Editors and Examples
* to usethe OCLinEcore editor
* to edit Ecore meta-models
* to enrich Ecore meta-models with OCL invariants, bodies and values
* to use embedded OCL for validation of models
* to usethe OCL Console to practice evaluation of OCL
* to generate Java code for Ecore that uses the embedded OCL
The Working with Classic OCL tutorial shows how
 the OCL Parser may be invoked from Java
» the OCL evauator may be invoked from Java

4.1. OCLinEcore tutorial

Thistutorial has been updated for Eclipse Luna; Eclipse 4.4, EMF 2.10, OCL 5.0.
» Some screenshots may be slightly out of date.

4.1.1. Overview
In this example you will
 Create an Ecore model using the OCLinEcore text editor
 Create adynamic instance of that Ecore model
* Enrich the Ecore model with OCL using the OCLinEcore text editor
 Validate the model and observe the OCL enrichments
» Usethe Interactive OCL Console to execute the OCL enrichments

The above is all performed without generating any Java code; the models exploit EMF's dynamic
capabilities and the OCL integration.

Y ou may then

 Create an Ecore genmodel

» Generate Java code for the Ecore model that invokes the OCL expressions.

See the OCL Debugger tutorial for debugging See the Code Generator tutorial for Java code generation

4.1.2. References

Thistutorial assumesthat the reader isfamiliar with generating modelsusing EMF. Thereader isreferred
to Generating an EMF Model.

Other references:

* The Object Constraint Language: Getting Y our Models Ready for MDA. Jos Warmer and Anneke
Kleppe. (Addison-Wesley Object Technology)

» OCL specification.

* OCLinEcore wiki page.

4.1.3. Installing the Eclipse OCL Examples
Please see the Instructions for installing the OCL Editors.

4.1.4. Troubleshooting

Theeditor currently provides syntax and semantic validation. It doesnot yet apply all thewell-formedness
validation rules, so some problems may be unreported. This is work in progress. Sometimes spurious
errors are displayed, which may go away with a Save, but may require an editor close and reopen.

Eclipse OCL 5.0 83

/help/topic/org.eclipse.emf.doc/tutorials/clibmod/clibmod.html
http://www.omg.org/spec/OCL
http://wiki.eclipse.org/MDT/OCLinEcore

Tutorials

4.1.5. Using the OCLinEcore text editor for Ecore
There are many different (compatible) ways to create and edit Ecore models.
* An Ecore Model may be created from an XSD schemafile
e An Ecore Model may be created from a Rose model file
» An Ecore Model may be created from annotated Javafile
» The Sample Ecore Editor provides tree editing
» The Ecore Tools project provides graphical editing
» Papyrus provides UML editing that may be converted to Ecore

Here we introduce the OCLinEcore editor that provides text editing, which is appropriate when a non-
trivial amount of OCL enrichment is required.

All the above approaches update a * .ecore file, so the user is free to choose whichever editing approach
is best suited for the planned changes.

4.1.5.1. Create a New EMF Project

We will first create a new project for this example; so invoke File->New->Project... (Ieft-click the File
menu, then left-click New, then left-click Project...).

In the New Project dialog left-click to expand Eclipse M odeling Framework, then left-click to select
Empty EMF Project.

& New Project I [=] B3

Select a wizard

Create an empty Java plug-in project with EMF dependencies

Wizards:

----- L Plugdn Project

#(= General

E-E CVS

E[& Eclipse Modeling Framework
gl EMF Project
EiA Empty EMF Project

= Java

== Plugin Development

= Xpal'ld

= Mext

= Examples

-

(?) < Back Next > Frish | Cancel |

Left-click on Next and in the New Empty EMF Project dialog type Tutorial as the project name.

Eclipse OCL 5.0 84

Tutorials

&= New Empty EMF Project O] =]

Empty EMF Project
Create an empty Java plug-n project with EMF dependencies

Project name: |Tut|:|ria|

I Use defautt location

Location: |C:\Temp'\Tutorial Erowse... |

Working sets

[Add project to working sets

A kit st j SEleat. |

(?) < Back Hevi> |[Fnish] cancel

Left-click on Finish.

4.1.5.2. Create a New Ecore Model
We will now create a new model for this example.

First right-click on the model folder in the Tutorial project to define the target folder and pop-up the
context-sensitive menu. Select New->Other ... then select the OCL inEcore Ecore File from the OCL
category.

= New I] 3
Select a wizard

Create a new OCLinEcore File that is persisted as a ~ ecore file

Wizards:

----- @ Operational QVT Ant Tasks ﬂ
{8 Operational QVT Library

g3 Operational QVT Project

{8 Operational QVT Transformation

= Modeling Workflow Engine

= 0CL

----- [6] Complete OCL File

----- [6] OCL Standard Library File

----- Gl OCLinEcors Ecore File

----- [6] OCLinEcore Text File
= Papyrus

= Plug-in Development
(== Tasks
B[User Assistance

KN

(?) CBck Next > Frsh | Cancel |

The alternative OCLinEcore Text File createsa*.oclinecore text file which preserves
whitespace and comments more faithfully but which must be converted to a *.ecore
file for many modeling purposes.

Eclipse OCL 5.0 85

Tutorials

Left-click Next and enter Tutorial.ecor e as the file name.

= New OCLinEcore Ecore File [=] B3

OCLinEcore Ecore File

Creates a new OCLinEcore file that is persisted as a *.ecore file.

Erter or select the parent folder:
|Tut0ria|

i o o

-l Tutorial

QCLinEcore Ecore file name: |Tut0ria|.ecore|

(?) <Back | teio [Fnsh | cancel |

Left-click Finish to open up an editor with some minimal example content demonstrating

the nesting of attributes or operations or invariants within classes within packages
 use of OCL to define the body of an operation

the syntax for mutually opposite properties

use of OCL to define an invariant and a custom error message

[0] Tutorial.ecore £3 = B
~ package example : ex = 'http://www.example.org/examples/example.ecore’ ;I
1
= class Example
{
= operation ucName() : String
body: name.toUpperCase();
attribute name : String;
property children#parent : Example[*] { ordered composes };
property parent#children : Example[?];
= invariant NameIslLowerCase('Expected a lowercase name rather than " + name + "''):
name = name.tolowerCase();
¥
L b _
£l _'I_I

Close the editor by left-clicking the cross on the editor tab.

Y ou can see the normal Ecore view of the file by right-clicking on the Tutorial .ecor e file to pop-up the
context-sensitive menu and select Open With->Sample Ecore M odel Editor.

Tutorial ecore £3 = 0

E@ platform:
-8 example
-z Ecors
EE Bxample
QEI Ecore
== Pivot

© B NamelsLowerCass -> Tuple {...
g @

T ucMamel) : EString
Bl Pivot
=5 body -= name tollpperCase()
= (1) EString

T name : EString

+]-- =t children : Bxample

F- o= parent : BExample

Close the editor by left-clicking the cross on the editor tab.

Eclipse OCL 5.0 86

Tutorials

4.1.5.3. Edit Ecore Model as OCLinEcore
We will now open the Ecore model using the OCLinEcore text editor and provide some initial content.

Right-click on the Tutorial.ecore file to pop-up the context-sensitive menu and select Open With-
>0CLinEcore Editor.

Now follow the following procedure to cut and paste the following text into the editor.
» select al existing content (e.g. Ctrl-A)

» deletedl (e.g. Ctrl-X)

 open [Text for cut and paste]

 select and copy the text (e.g Ctrl-A and Ctrl-C) from the browser
 paste (e.g Ctrl-V) in the original editor

» save the contents (e.g. Ctrl-S)

import ecore : ‘http://www.eclipse.org/emf/2002/Ecored/";

package tutorial : tut = "http://www.eclipse.crg/mdt/ocl/eclinecore/tutorial’

1

class Library

{

attribute name : String;

property books#library : Book[*] { composes };
property loans : Loan[*] { composes };

property members#library : Member[*] { composes };

}

class Book

{

attribute name : String;

attribute copies : Integer;

property library#books : Library[?];
}

class Member

{

attribute name : String;
property library#members : Library[?];
b

class Loan

1
property book : Book;
property member : Member;
attribute date : ecore::EDate[?];

}
b

The syntax is defined in OCLinEcore. It emulates OMG specifications with ‘name : typel multiplicity]
{ properties}’.

» i mport associatesan alias with an external EPackage.

» package introduces an EPackage with name, nsPrefix and nsURI.

» cl ass introduces an EClass with name and optional superclasses.

» attri but e introduces a property with a datatype type (an EAttribute).
» property introduces aproperty with a classtype (an EReference).
 # introduces an opposite role name.

e ' xxx' escapesan awkward or reserved word identifier.

The import URI is the URI of a Package, so in the example the htt p: // ww. ecl i pse. or g/
enf / 2002/ Ecor e isthe URI of themodel, # isthe fragment separator and/ isthe path to the Package
at the root of the XMI document.

Eclipse OCL 5.0 87

../references/4100-metamodel.oclinecore

Tutorials

Completion assist (Ctrl Space) may be used for syntax assistance.
Format (Ctrl-Shift F) may be used to auto-format a selected range.

In order to discover a syntax for which completion assist is insufficient, you may use the Sample Ecore
Editor on atest file to create the kind of Ecore element that you require, and then open the test file with
the OCLinEcore editor to see the corresponding textual syntax.

4.1.5.4. The Tutorial Meta-Model

The example meta-model models a library with members and books and loans of books to members. It
may be viewed graphically using the Ecore Tools (not part of this tutorial).

library | g Library 0.1
01 = name : EString [** library
[}
0..* | books 0. | loans 0..* | members
B Book book H Loan member H Member
o name : EString o date : EDate 0.1 | .= name: EString

= copies : EBigInteger 0.1

Note that this diagram is an Ecore Diagram rather than aUML Diagram and so the default multiplicities
for attributesis Ecore' s[0..1] rather than OCLinEcore’'sand UML’s[1..1].

Note also that the OCL types St ri ng and | nt eger mapto ESt ri ng and EBi gl nt eger in Ecore.

4.1.6. Create a Dynamic Model Instance

At this point a corresponding EMF tutorial would show how to generate Java code for the meta-model
and an editor for the meta-model. Here we are concerned with modeling, so we will continue with the

models alone.

In the editor view, double-click on Library to select it and then right-click to show the context-sensitive
menu and then left-click on Create Dynamic Instance... to start to create a new Dynamic Model with

Li brary atitsroot.

Creating a Dynamic Instance requires a valid *.ecore file to exist. It does not work

when editing *.oclinecorefiles.

[0] Tuterial.ecore &3

package tutorial -

_ import ecore : 'http:ffwww.ectipse.a;l

Py [T S A

EE Outline 23

= |

5 1%

{
class

Find References

Ctrl+shift+G

{

Create Dynamic Instance...

attributs
property
property
property

class Book

1

Run As
Debug As
Profile As
Team
Compare With

3
2
3
2

3

R LN R Iy RW T
HC

- # OCL in Ecore document

- Classifier, 1
me : String
oks : Book[*]
ns : Loan[*]
mbers : Membs
= Classifier, Cl:

br -> Classifier,

= Classifier, Cl:

In the Create Dynamic Instance dialog select Tutorial/model as the parent folder and enter

Tutorial.xmi asthe file name for the dynamic model instance and left-click Finish.

Eclipse OCL 5.0

88

Tutorials

~lo x|

Dynamic Model
Create a new dynamic Library instance ¢
LY |

Enter or select the parent folder:
| Tutorial fmodel

it

2 META-INF

------ = model

File name: | Tutorikl. xmi

Advanced = |

@j Finish I Cancel |

The model is automatically opened for editing. If it is does open with the Sample Reflective Ecore M odel
Editor, close the editor and open explicitly using * Open With->Sample Reflective Ecore Model Editor).
Thisgivesatree-like presentation of the model. The properties of each node can be seen in the Properties
View.

|=| Tutorial.ecore L Tutorial.xmi &2 * =0

= @ platform: fresourceTutorial fmodel Tutorial. xmi

P +

@ platform: fresource Tutorial fmodel Tutorial . ecore

= Properties 23 IE = = ¥ =8
Property | Value
Mame =
1| | 0
(If the Properties View is not visible, right-click within the editor and left-click on Show Properties
View.)

Select the Library and use give it aname such asl i b.

From the right-button menu for Li br ar y use New Child->Books Book twice, use New Child->L oans
L oan once and New Child->M embers Member three times to popul ate the model with two books, one
loan and three members.

Left-click to select each of the Books and Membersin turn and enter aname such asb1 or n2 using the
Properties View. Specify that b1 has one copy and that b2 has 2 copies.

Eclipse OCL 5.0 89

Tutorials

[6] Tutorial ecore L& Tutorialomi 53 s = O

E@ platform:/resource/ Tutoral ‘model/ Tutorial 2mi
= 4 Library lib

-4 Book b1
; o ook b2

----- 4 Memberm1
i 4 Member m2
i Memberm3
- [6] platform:/resource/ Tutoral/model/ Tutorial ecore

=l Properties 53 e ¥ = 8
Property I Value I
Copies =2
Library I= Library lib
Name I=h2

The books and members now have distinct titles in the outline. When you left-click to select the Loan
and edit its Book and Member attributes, the associated pull-down has meaningful entries. Specify that
the Loanisfor b2 by n8.

0] Tutorial ecore [l “Tutorialxmi &3 2 = O

(= @ platform: /resource ./ Tutorial /model Tutorial xmi
-4 Library lib
4 Book b1
4 Book b2
+ e
4 Memberm1
-4 Member m2
i e Member m3
[+l @ platform:/resource/ Tutorial ‘/model/ Tutoral ecore

E Properties 2 | o ¥ =0
Fmﬁ ’ Walue

Date 'S Book b1

Member i5Hook b2

The configuration so far is simple, three members, two books and one loan. We can validate that this by
right-clicking on the Li br ar y node, and |eft-clicking to Validate Li br ar y and al its children.

|=| Tutorial.ecore Ll *Tutorial.xmi 52 1 = B8
= @ platform: fresource Tutorial fmodel Tutorial mi
B4
ey Mew Child 3
“ % lUndo Delete cri+z
i Redn Chrl
e
- <+ -.-E Copy
(-] platforn Paste re
= Properties | ¢ DElEtE g = ¥ =
Mame Contral,,.
Run As r
Debug As »
A v
L= Team 4 —I —I

Since the model is so simple, it is difficult to have anything wrong; most of theillegal modeling options
such as a Loan composing rather than referencing a Book are prevented by the Editor’ s enforcement of
the meta-model.

Eclipse OCL 5.0 90

Tutorials

& validation Information |

'6' Validation completed successfully

(If you have an error at this point, a Details button will lead you to some diagnostics that may clarify the
problem. Pasting the following XM into Tutorial.xmi should also resolve an entry problem.)

<?xm version="1.0" encodi ng="ASCl | " ?>
<tut:Library xm:version="2.0" xm ns:xm ="http://ww. ong. org/ XM "
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns:tut="http://ww. eclipse.org/ndt/ocl/oclinecore/tutorial"
xsi : schemaLocati on="http://ww. ecl i pse. org/ mdt/ocl/oclinecore/tutorial Tutorial.ecore"
name="1ib" >
<books nane="bl" copies="1"/>
<books nane="b2" copi es="2"/>
<l oans book="// @ooks. 1" menber="// @enbers. 2"/ >
<menbers name="nl"/>
<menber s name="n2"/>
<menber s name="nB"/>
</tut:Library>

Wewill now create two further identical loans of b2 by 8. This may conveniently be performed by |eft-
clicking to select the existing loan, typing Ctrl-C to copy it, |eft-clicking to select the Li br ary asthe
new parent, then typing Ctrl-V to pasteit on the library. Repeat so that there are three identical loans.

Validating the library should still be successful, although it is clearly wrong for the two copies of b2 to
participate in three loans.

4.1.7. Enrich the meta-model with OCL

The semantic constraint that a book cannot be borrowed more times than there are books is a smple
example of aconstraint that cannot be expressed by simple multiplicities; a more powerful capability is
required that may potentially require evaluation of functions of almost arbitrary complexity. The Object
Constraint Language provides this capability.

The constraint can be realized as an invariant on a book that specifies that that (the size of the (selection
of loans involving the book)) is less than or equal to (the number of copies of the book).

i nvari ant Suffi ci ent Copi es:
li brary. | oans->sel ect (book=sel f)->size() <= copi es;
In more detail:
» aninvariant is defined whose nameis Suf f i ci ent Copi es
» withinthe invariant on aBook, sel f istheinstance of Book being validated.

e library. | oans, whichisshort for sel f. i brary. | oans, navigates to the library and then
toal loansinthelibrary.

e ->sel ect(...) isacollection iteration over the loans. It selects each loan for which its argument
expression istrue

» book=sel f, whichisshort foraLoan : Loan | alLoan.book = self, usesthealLoan
iterator over each loan to select those for which the book is the book being validated

» ->sj ze() isacoallection operation that just counts the number of selected loans

» <= copi es, whichisshort for <= sel f. copi es convertsthe count tot r ue if it is consistent,
or f al se if inconsistent.

Closethe Tutorial.xmi editor beforemodifying itsmeta-model. (Bewarethat awide variety of unpleasant
errors can occur if the meta-model is changed after the model isloaded.)

Add the invariant shown below to the meta-model.

Eclipse OCL 5.0 91

Tutorials

class Book
1
invariant SufficientCopies:
Library.loans-»select(book=self)->size() <= copies;
attribute name : String;
attribute copies : Integer;
property libraryi#books : Library[?];
¥

[Text for cut and paste]

The required semantic is expressed by the Suf f i ci ent Copi es invariant constraint for aBook. For a
valid model the SufficientCopiesinvariant must always be true.

If you reopen the Tutorial.xmi editor and invoke Validate for the Li br ary, you will now get a
validation error. Left click Details for details.

& validation Problems x|

I.-"'_"\-.I Problems encountered during validation
b Reason:
Diagnosis of Library

0K | << Details I

The Details identifiesthat the Suf f i ci ent Copi es invariant is not satisfied for the b2 book.

If you now change the first loan so that b1 is borrowed and then validate again, the problem is resolved.
Itisalright for N8 to borrow the one copy of b1 and the two copies of b2.

Before introducing a further constraint of no duplicate loans, we will show how OCL expressions can
be exercised. OCL is a very powerful compact language; the example hides a loop over all the loans.
More complex examples may easily involve three or four levels of hidden loops on asingle line, but may
equally easily have simple errors. It istherefore hel pful to simplify expressions and use helper operations
and properties to modularise them. These may then be exercised using the OCL Console or debugged
using the OCL Debugger.

4.1.8. The OCL Console

The OCL Console supportsinteractive execution of an OCL expression in the context of amodel instance.

To make the OCL Console visible, first make the Console view visible by Window->Show View-
>Console. Then right click on the Open Console and left click on I nteractive Xtext OCL.

El Console 53 = I 51{>>' = 7
Mo consoles to display &t this tims. 1 Java Stack Trace Conscle
5! 2 Host DSGi Console
EY3cvs
4 New Console View

G2k 5 Interactive OCL

B} 6 Interactive Xext OCL
75VN

Alternatively, you can just invoke OCL ->Show Xtext OCL Console from the right button menu within
the Sample Ecor e Editor or Sample Reflective Ecor e Editor.

Eclipse OCL 5.0 92

../references/4100-metamodel2.oclinecore

Tutorials

The Xtext OCL console is new Xtext-based functionality that uses the Pivot binding.
It isfaster, and more compliant with the OCL specification, than the OCL console that
uses the L PG parser and Ecore binding.

The Interactive Xtext OCL console comprises two main text panes. The upper pane displays results.
The lower pane supports entry of queries.

Left-click to select the Li br ar y in the Tutorial .xmi as the context for a query, and then type books
followed by a new lineinto the lower pane of the console.

Theresult of evaluating this query for the Library is shown.

L) Tutorialxmi 52 = O

(= D platform:fresource./ Tutorial / Tutarial xmi
B4

----- < Book b1

""" < Book b2

""" 4 Memberm1
----- % Member m2
""" <4 Member m3
[]---@ platform: /resource/ Tutorial/ Tutarial ecore

lelp[@Jfl2p[+'s[Bc =2\ Sle|Or| =
S H R B Y

¥text OCL for "Library lib" : Library

Evaluating: ;I

books

Results:

Library lib::Bock bl

Library lib::Book b2

Substantial OCL queries spanning many lines may be entered and so the cursor up and cursor down keys
move across lines. If you want to access an earlier query, you may use the Page Up or Page Down keys
to save typing them again.

Y ou can examine the execution of the earlier query by selecting each of the books in turn and executing
library.| oans->sel ect (book=sel f),toseethat bl hasonelLoanand b2 two.

4.1.9. Helper Features and Operations

We will now introduce some helper attributes and operations to make the OCL clearer and provide a
richer meta-model API. Closethe Tutorial.xmi editor and modify the meta-model to include the derived
| oans property and the helper operationi sAvai | abl e() . Simplify the invariant to use the derived
property.

Eclipse OCL 5.0 93

Tutorials

class Book
1
invariant SufficientCopies:
Library. loans->select{book=self)-»size() <= copies;
attribute name : String;
attribute copies : Integer;
property library#books : Library[?];
property loans : Leoan[*] { derived,volatile }

1
derivation: library.loans-:select(book=self);

}

operation isAwvailable() : Boolean[?]

body: Lloagns-»size() < copies;
}
}

[Text for cut and paste]

Note that the derived property must also be volatile to avoid problems when a model is loaded but has
no content.

Reopen Tutorial.xmi and select Book b2 so that the derived property isvisible in the Properties view.

[6] Titorial ecors L& Tutorialomi 53 s = O

= @ platform:/resource/ Tutoral ‘model/ Tutorial 2mi

= 4 Library lib
""" < Book b1
----- < Book b2
..... 4 Loan
----- < Loan
..... 4 Loan
----- 4 Memberm1
""" 4 Member m2
----- 4 Memberm3
- [6] platform:/resource/ Tutoral/model/ Tutorial ecore
£ Properties &3 = IE g ¥ =0
Library I= Library lib
Loans I= Loan, Loan
Name I=h2

The helper operation can be evaluated in the Console view by selecting book b2 and typing
i sAvai | abl e() for execution.

Eclipse OCL 5.0 94

../references/4100-metamodel3.oclinecore

Tutorials

& Tutorialomi 53 = 0
E- = platform:fresource/ Tutorial Tutorial xami

-4 Library lib

""" < Book b1

----- “ Book b2

----- 4 Memberm1
""" <4 Member m2
----- % Member m3
(-8 platform:/resource/ Tuteral/ Tutorial ecore

lelp[eJ[l2 [+ s[Becz\ Or| ™ = g

B xR |[MB - ¥
¥text OCL for "Library lib::Book b2 : Book

e

Evaluating: -
isfvailable()

Results:

false

1 _>I_I
isAvailable ()] < |m
=l ’

We will now add further helpers and constraints to enforce an at most two loans per member policy and
to require loans to be unique.

(Don't forget to close Tutorial.xmi while changing its meta-model.)

class Member

1
invariant AtMostTwoloans:
Loans->size() <= 23
invariant Uniqueloans:
Loans->isUnigue(book);
attribute name : String;
property library#members : Library[?];
property loans : Loan[*] { derived,volatile }
1
derivation: Llibrary.loans-:select{member=self);
}
property books : Book[*] { derived,volatile,!unique }
1
derivation: loans-»collect{book);
}
b
[Text for cut and paste]

Theadditional books property may be evaluated in the OCL Consol e to show which books each member
has on loan. The property may also be seen in the Propertiesview.

Select the library again and invoke Validate from the right button menu. There are now two validation
failures.

Eclipse OCL 5.0 95

../references/4100-metamodel4.oclinecore

Tutorials

& Validation Problems
If"_\l Problems encountersd during validation

k., 4
= Reaszon:

Diagnosis of Library

ok |[<«Dewis |

’ 3 The "AtMost Twoloans’ constraint is violated on "Member m3'

L@ The 'UniqueLoans’ constraint is violated on "Member m3'

4.1.10. Generating Java Code

We have shown how OCL may be used to enrich Ecore meta-models, how model instances can be created
and validated and how expressions can be evaluated, all without generating any Java code.

Exactly the same facilities are available if you do generate Java code and as a result you gain some
speed benefits. By default, in the Eclipse OCL 5.0.0 (Luna) release the generated Java code for OCL is
interpreted and so the speed gains occur only for the EMF models. In the Code Generation Tutorial, a
preliminary release of the OCL to Java code generator is described, giving an approximately five-fold
speed improvement and eliminating the need for run-time compilation.

Generating Java codeis exactly the same asfor any other EMF project. (Prior to EMF 2.8, there was one
important difference; you must explicitly set Operation Reflection to true. The default for this changed
to truein EMF 2.8.)

Select the Tutorial.ecor e file and invoke New->Other ... from the right button menu and select Eclipse
M odeling Framework and EMF Generator Model.

& New i [=]

Select a wizard
Create an EMF generator model and, f needed, the underying Ecore model

_—

Wizards:
(& Class I
----- ¥ Inteface
----- g Java Project

----- & Java Project from Existing Ant Buildfile
---- I Plugdn Project

= General

-G CVS

E|[Eb Eclipse Modeling Framework

-8 Ecore Model

i] E1/\F Generator Model
T EMF Project

T Empty EMF Project

H-= Mapping

I:;I---[Eb Example EMF Model Creation Wizards j
(?) < Back Next > Firish Cancel
Select Next.

Eclipse OCL 5.0 96

Tutorials

MNew EMF Generator Model

EMF Generator Model
Create the generator model

utorial/model

Select Next.

MNew EMF Generator Model

Select a Model Importer
Create the Ecore model based on other Ecore or EMOF models

Select Next.

New EMF Generator Model

Ecore Import
Specify one or mare "ecaore’ or " emof’ URIs and try to load them

platform: fresource/ Tutorial /model/ Tutorial ecore

(2)

Eclipse OCL 5.0

97

Tutorials

Select Load and Next.

& New EMF Generator Model =13
Package Selection &_
Specify which packages to generate and which to reference from other generator
models
Root packages: Select All | Deselect Al |
Package | File Name |
£ tutorial Tutorial ecore
Referenced generator models: Add... |
(?) < Back Newt > Finish Cancel
Select Finish.

The Tutorial.genmodel editor opens.

= Tutorial ecore al.ge g = O
= 'Eg Tutorial
- ## Tutorial

= Propetties 53 f’E = ¥ =08
Property | Value ﬂ

Imterface Mame Pattem =

Minimal Reflective Methods I+& true

Madel Directory I'= /Tutorial /src

Model Plugdn Class =

Model Plugdn 1D I= Tutoril =

Model Plug4n Variables =

Operation Reflection lvic true:

Suppress Containment v false

Suppress EMF Metadata | 1% false _Ij
4| | B

Most of the default settings are suitable. The one that may not be is highlighted. Select the root Tutorial
and scroll down the Properties view and set Operation Reflection to trueiif it is not already true. (As
from EMF 2.8 the default istrue.)

Y ou may now invoke Generate Model Code from the right button menu of either Tutorial to generate
Java models that invoke OCL.

= Tutorial ecore Tutorial.genmodel 3 = O
R 7o

___$ Generate Model Code
Generate Edit Code
Generate Edtor Code
Generate Test Code
Generate All

pen Ecare

I e et el

Eclipse OCL 5.0 98

Tutorials

4.1.10.1. Java Details

You can check that the OCL appears in your Java by looking at tutorial.util.TutorialValidator.java
where you'll find the OCL expression as a String awaiting compilation at run-time, and the validate
invocation that triggers that compilation and execution.

protected static final String MEMBER _AT_MOST_TWO LOANS__EEXPRESSION = "\n" +
"\t\t\tl oans->si ze() <= 2";

publ i ¢ bool ean val i dat eMenber _At Most TwoLoans(Menber nenber, Di agnosti cChain
di agnostics, Map<Obj ect, Object> context) {

return
val i date
(Tut ori al Package. Li teral s. MEMBER,
menber,
di agnosti cs,
cont ext,

"http://ww. eclipse. org/enf/2002/ Ecore/ OCL",
" At Most TwoLoans",
MEMBER _AT_MOST_TWO LOANS__EEXPRESSI ON,
Di agnosti c. ERROR,
DI AGNOSTI C_SOURCE,
0);
}

Similarly in BookImpl you will find the declaration of a cached delegate and the dynamic invocation
that provokes the first time compilation.

protected static final EQperation.Internal.lnvocationDel egate
I S_AVAI LABLE _EI NVOCATI ON_DELEGATE = ((EOperati on. I nternal)
Tutori al Package. Literal s. BOOK___|'S AVAI LABLE) . get | nvocat i onDel egat e() ;

publ i c bool ean i sAvail abl e() {
try {
return (Bool ean)
I S_AVAI LABLE__EIl NVOCATI ON_DELEGATE. dynanmi cl nvoke(this, null);

catch (lnvocationTarget Exception ite) {
t hrow new W appedException(ite);

}
}

The OCL expresson for the invocation delegate may be found @ in
TutorialPackagel mpl.createOCL Annotations().

addAnnot ati on
(get Book__I sAvai |l abl e(),

sour ce,

new String[] {

"body", "l oans->size() < copies"
1)

4.1.10.2. API Invariants
The invariants we have used so far do not contribute to the class API.

If you want to have fine grain control of which validations are performed, perhaps because in some
incremental context not all are appropriate, you may use the operation form of an invariant.

Eclipse OCL 5.0 99

Tutorials

cl ass Book

{

operation sufficientCopi es(di agnostics : ecore:: ED agnosti cChain,
context : ecore:: EVap<ecore:: EJavaQbj ect, ecore: : EJavaCbj ect>) : Bool ean

{

body: |ibrary.|oans->sel ect (book=sel f)->size() <= copi es;
}

attribute nane : String;

attribute copies : Integer;

property library#books : Library;

}

Notethat the operation must have aBoolean return (truefor valid) and diagnostics and context arguments.

4.1.11.

Summary

To illustrate how to work with the OCL and Ecore as models we have

Created an Ecore meta-model using the OCLinEcore text editor
Created a dynamic model instance from that meta-model
Enriched the meta-model with embedded OCL

Used the embedded OCL while validating the model

Queried the model usng the Interactive OCL Console.
Evaluated OCL embedded in the meta-model in the Console.

To use OCL and Ecore as generated Java models we have

Generated Java that exploits the embedded OCL.

4.2. Complete OCL tutorial

Thistutorial has been updated for Eclipse Luna: Eclipse 4.4, EMF 2.10, OCL 5.0.

Some screenshots may be slightly out of date.

4.2.1. Overview
In this example you will

Get an Overview of the Complete OCL language

Load a Complete OCL document into athird party application
Enhance Ecore validation for derived properties

Validate an Ecore model using additional Complete OCL validation
Enhance UML validation

Validate a UML model using additional Complete OCL validation
Enhance Xtext validation

Validate an Xtext grammar using additional Complete OCL validation

4.2.2. Complete OCL Utility

By itself, OCL is amost useless, since without any modelsto operate on, the constraints cannot achieve
agreat deal.

The simplest way to make OCL useful isto embed OCL expressions within a model to enrich the basic
structural characteristics of amodel with more complex behavior. OCLinEcore provides this capability
for Ecore models. Papyrus provides comparable capabilities for UML models.

This tutorial introduces the Complete OCL language which may be used to provide a self-standing
document that complements a pre-existing meta-model.

4.2.3. Load Complete OCL Tutorial Example Project

All the material for this tutorial is available as part of the CompleteOCL Tutorial Example project that
you may load by selecting New then Example... using the right button context menu of the Project

Eclipse OCL 5.0 100

Tutorials

Explorer. This should give the New Exampledialog in which you can select the OCL (OCL Constraint
L anguage) Plugins and the Complete OCL Tutorial.
< New Example (=] ES
Select a wizard
Create a plug-n project forthe Complete OCL Tutorial

Wizards:

t;.-:--s fitter test

----- Eb‘ QCL Interpreter

----- [6] OCLinEcore Tutorial

----- [6] Royal and Loyal Example

E-= Operational QVT Transformation

1% Blackbox Library Definition

| SimpleUML to RDB Transformation Project

El-= ¥ML Schema Definition

¢ L.[§7 XML Schema Example |

(?) JBatk Hew> | Fnsh | cancel

If you do not see these example projects, follow the Instructions for installing the OCL Editors.
Theresulting project has afew test files.

= 1= CompleteOCLTutoral

E[E' model

""" @ EcoreTestFile ecore

""" [0 BdraEcoreValidation.od
----- [6] ExtralUMLValidation.oc!
""" @ ExtratextValidation ocl
""" |=| PapyrusTestFile di

""" |= PapyrusTestFile notation
""" #] PapyrusTestFile uml

----- text TestFile ext

..... B project

4.2.4. Complete OCL Language Overview

The Complete OCL language is described in detail in the Complete OCL section of this documentation.
Inthistutorial we will provide just abrief overview of the language. If not already open, double click on
ExtraEcoreValidation.ocl to show the following text that provides examples of many important aspects
of the Complete OCL syntax.

Eclipse OCL 5.0 101

Tutorials

import ecore : “http:/www.eclipse.org/emf/2002/Ecores/”
package ecore

context EModelElement

FET

* Declare a helper operation to map an gk/warning verdict to gk/error
.

def: asError(verdict : Boolean) : Boolean = if verdict then true else null endif

* Extra validation for EReference and EAttribute.
&

context EStructuralFeature

_n'.:'::':

* Declare a helper property to determine whether an EStructuralFeature has an OCL derivation.

* g

def: hasDerivation : Boolean =

ednnotations-sselect(source.startsWith("http://www.eclipse.org/emf/2882/Ecore/0CL")) ->notEmpty ()

If a feature has an OCL derivation, it should be transient; otherwise it is not executed.
P

inv DerivationIsTransient: hasDerivation implies transient

jE®

* If a feature has an OCL derivation, it must be wolatile;
* otherwise the cached value suppresses execution.
%y

inv DerivationIsVolatile: asError(hasDerivation implies volatile)

jE®

If a feature has an OCL derivation, it should not also have a default value.
* 7

inv DerivationIsUninitialized: hasDerivation implies defoultValue.oclIsUndefined()

JEE

xtra validation for just EReference.
o

context EReference

jE®

If a feature has an OCL derivation, it should not compete with built-in containment.
&

inv DerivationIsNotComposed: asError(hasDerivation implies not containment)

JEE

* If a feature has an OCL derivation, it should be not waste time resolving proxies.
ny

inv DerivationDoesNotResolveProxies: hasDerivation implies not resolveProxies

FET
* If a feature has an OCL derivation and an opposite,

* the opposite should also hawve an OCL derivation
ny

inv DerivationWithOppositeHasOppositeDerivation:
hasDerivation and eOpposite <> null implies eOpposite.hasDerivation

endpackage

4.2.4.1. import declarations

The import statement is a serious omission from the OMG specification, since without it, any attempt
to align the Complete OCL constraints with external models relies on implementation-specific magic.
The import statement is therefore an Eclipse OCL extension that is likely to be part of a future OCL
specification revision.

Zero or more import statements may be present to specify the URIs of external model elements and
optionally alias names for those elements. In the example:

inmport ecore : 'http://ww. eclipse.org/enf/2002/ Ecore#/'

http://ww. eclipse. org/enf/ 2002/ Ecor e specifies the URI of the Ecore metamodel and
#/ isthe fragment URI navigating to the root element which isthe Ecore package. Theecor e specifies

Eclipse OCL 5.0 102

Tutorials

an aliasfor this package, which happens to be the same as the name of the package. Within the Complete
OCL document, the imported model element may be referred to by itsalias.

The Java API support for using Complete OCL documents with the Ecore and UML
bindings requires implementati on-specific magic; theimported models must be loaded
into the package registry by the invoking code. Import statements are not used.

Prior to the Juno release, import statements were not understood and so there was a
usage conflict. Preparation of a Complete OCL document using the Xtext editor, or
usage with Pivot model and Xtext parser required import statements. But re-use with
the Ecore and UML LPG parser required the import statements to be removed.

In Juno, the LPG parser ignores the import statements, so they may beleft in.

4.2.4.2. package context declaration

A package context declaration may bracket declarations that complement model elements within the
complemented package.

package ecore

endpackage

This specifies that additional Complete OCL declarations will complement the pre-existing declarations
of theecor e package.

Multiple package context declarations may be used to complement multiple packages.

The package context declaration may be omitted if subsequent classifier context declarations have afully
qualified name identifying the package.

4.2.4.3. classifier context declaration

A classifier context declaration introduces declarations that complement subsequent model el ements
within the complemented classifier.

cont ext EMbdel El enent

The classifier context isterminated by acont ext or anendpackage.

4.2.4.4. feature definitions

Additional operations and properties may be defined for use within the Complete OCL document. These
features may be used asif they were part of the complemented meta-model.

def: asError(verdict : Bool ean) : Bool ean =
if verdict then true else null endif

def: hasDerivation : Bool ean = eAnnotati ons->sel ect (source.startsWt h(
"http://ww. eclipse.org/enf/ 2002/ Ecore/ OCL')) ->not Enpt y()

A definition starts with the new feature name, then the parameters for operations and the feature type
followed by an OCL expression that evaluates the operation or the property.

For properties such as hasDer i vat i on there is very little difference between a property definition
hasDeri vati on and a parameter-less operation definition hasDeri vati on(). The property
definition and usage is two characters shorter and may seem more natural. The operation definition has
the advantage that it can be overloaded in derived classes.

4.2.4.5. class invariants

Invariants may be imposed on a complemented meta-model. The invariant comprises the name of the
invariant followed by an OCL expression that evaluates true when the invariant is satisfied.

inv DerivationlsTransient: hasDerivation inplies transient

Eclipse OCL 5.0 103

Tutorials

These invariants are executed when a model is validated in an application that has loaded the
complementing Complete OCL document. The significance of thisisexplained in OCL ->L oad Document
Menu Action.

The readability of constraints can be significantly enhanced by the use of let-variables or the re-use, as
above, of thehasDer i vat i on helper property.

4.2.4.6. custom messages

Eclipse OCL supports two extensions to invariants that alow the validation failure messages and
severities to be customized.

inv DerivationlsVolatile(
""volatile" must be specified for derived feature ' + self.toString()):
asError (hasDerivation inplies volatile)

The invariant name may be followed by a parenthesized OCL expression that computes a String to be
used as the validation failure message.

The severity of a validation failure may be controlled by the non-true value evaluated by the invariant
expression.

« af al se return indicates awarning severity

e anul | returnindicatesan error severity

e ani nval i d return indicates afatal severity
See Custom Validation Messages for more details.

4.2.4.7. operation and property context declarations

Complete OCL aso alows an incomplete operation or property declaration in the complemented meta-
model to be completed.

« initial and derived values may be specified for properties.
« preconditions, a body and postconditions may be specified for operations.
These facilities are of limited use since OCLinEcore avoids the need for incomplete meta-models.

4.25. OCL->Load Document Menu Action

The major disclaimer in the above isthat the Complete OCL only complements the complemented meta-
model in applications that have |oaded the Complete OCL.

Prior to the Juno release, this meant that Complete OCL was only usable in custom Java applications
since no standard modeling applications would load the complementing document.

The OCL->L oad Document menu action enables a Complete OCL document to be loaded into awide
variety of applications.

Eclipse OCL 5.0 104

Tutorials

chutorial /model /Ecare TestFile ecore

SR 8 platform: /resource.forg.

588 Bad 1 ale] [
E ﬂ:‘ GEHMDdEl HEdD Etfl‘i‘Y
[documentat
i (B0t
== Ecore :
R — S k/2002/Ecore/OCL/Pivet
~[E3 settingDelec Haste P02/Ecore/OCL/Pivot
------ =4 validationDe Delete 2002/ Bcore/QOCLPivot
=B BadClass
=- '? uncachedD Validate
=i Pivet Live Validation
“ [deri [Eattrall.,
i (1) EBooles
Debug A= 3
Run As 3
Replace With r
" [Load Document
Team 3
Compare With p Gz Show OCL Console
Losd Resource. G Show Xtext OCL Coneole
Refresh

Show Properties View

The OCL->Load Document menu action is added to the right button menu of applications with a
ResourceSet accessible from the current selection.

It has been observed that the extra menu action is not always immediately available,
so if you do not seeiit, hit Esc to cancel the menu, select something corresponding to
amodel object and right click again.

In Luna, suitable applications are
* an editor generated from an Ecore meta-model
* the Sample Ecore Editor
» the UML Model Editor
* the Papyrus Model Editor
 your model editor
 an editor generated by Xtext
* the Xtext Editor
« the MWE2 Editor
 the OCLinEcore Editor
e your DSL editor

The OCL ->L oad Document menu action activatesthe L oad Complete OCL Document dialoginwhich
you can browse Registered Complete OCL Documents, the File system or the Workspace for one or more
Complete OCL documents to load, or often more conveniently you can just Drag and Drop them from
an Operating System Explorer or an Eclipse Explorer.

Eclipse OCL 5.0 105

Tutorials

= Load Complete OCL Document Mi=] B3

Resource URls: Browse Registered OCL Files... | Browse File System... | Browse Workspace... |

You may Drag and Drop from an Eclipse or Operating System Bxplorer.

oK I Cancel

After clicking OK the documents load.

Behind the scenes, it is necessary to install global wrappers around all complemented
packages. These wrappers are sensitive to the ResourceSet for which complementing
has been requested and so although thisincurs a small performance penalty for use of
the complemented packages in other applications, it should not affect the functional
behavior of other applications.

4.2.6. Example Complete OCL complements for Ecore

The Sample Ecore Editor has acquired many useful validation rules, so that for many usagesjust invoking
Validateis quite sufficient. But what if it isn’'t? Perhaps you have some style conventions that you wish
to apply. Perhaps the built-in rules are not sufficient.

Prior to Juno and the OCL->L oad Document capability, your only choice would be to check out the
Ecore Editor and create a custom variant. Now you can use Complete OCL to extend the Sample Ecore
Editor.

Wewill revisit the ExtraEcor eValidation.ocl document that we have just examined and useit to rectify
inadequate checking of derived properties by the Sample Ecore Editor. The document provides six
invariants, at least three of which detect problems that were encountered by users during the Indigo
release cycle.

4.2.6.1. DerivationlsVolatile

The EMF code generation templates have asimple treatment of vol at i | e. Non-volatile variables have
an associated field which is returned by the get operation. This overrides any derivation that might be
supplied.

inv DerivationlsVolatile: asError(hasDerivation inplies volatile)
Wetherefore want to diagnose that if an EStructural Feature has a derivation then the volatile declaration
is also present to avoid the derivation being ignored.

This problem is so serious that the basic expression iswrapped intheasEr r or operation to convert the
defaultt r ue / f al se okay/warning severity intothet r ue / nul | okay/error severity.

4.2.6.2. DerivationlsTransient

The EMF code generation templates have a similarly simple treatment of t r ansi ent . Non-transient
variableswill be serialized as part of amodel save. Thisisnot usually appropriate since the derived value
is redundant and can be recomputed when the model isloaded again.

inv DerivationlsTransient: hasDerivation inplies transient

We therefore want to diagnose that a derivation is not serialized because of a default non-transient
declaration.

4.2.6.3. DerivationlsNotComposed

Composition is handled directly by EMF and it is not clear that it is appropriate to define an aternate
meaning of composition. It is pretty certain that EMF will not permit an alternate semantics.

inv Derivationl sNot Conposed: asError(hasDerivation inplies not containnent)

Eclipse OCL 5.0 106

Tutorials

We therefore want to diagnose if a derivation is attempting to specify alternate composition semantics
and report an error if this occurs.

4.2.6.4. DerivationWithOppositeHasOppositeDerivation

Opposites are also handled directly by EMF, but it is possible to replace this functionality. However if
the forward functionality is replaced, it is very unlikely that EMF s default reverse functionality will be
appropriate.

inv Derivati onWthQppositeHasQppositeDerivation:
hasDeri vation and eQpposite <> null inplies eQpposite.hasDerivation

We therefore want to diagnose that a derivation that redefines the forward semantic of opposite also
redefines the corresponding reverse semantics.

4.2.6.5. DerivationlsUninitialized

Aninitia value for a property may be specified as asimple default value or as a derived expression.

inv DerivationlsUninitialized:
hasDeri vation inplies defaultVal ue.ocl | sUndefi ned()

We want to diagnose the occlusion of the derived expression by a default value.

4.2.6.6. DerivationDoesNotResolveProxies

4.2.7.

Derived expressions are not references.
i nv Derivati onDoesNot Resol vePr oxi es:
hasDerivation inplies not resol veProxies

We can therefore diagnose whether the EMF proxy resolution logic is not suppressed.

Validating Ecore with additional Complete OCL

In the previous section we described additional Complete OCL validation constraints to detect problems
with inadequate Sample Ecore diagnosis of derived properties. We will now apply those constraints to
atest file.

Select Ecor eT estFile.ecor eand use theright button menu to Open With->Sample Ecore M odel Editor.
Thisis probably the default for double-clicking with the left button, but if you open with the OCLinEcore
editor the required validation will not work (in Juno).

Now right click within the Sample Ecore Editor pane asdescribed in OCL ->L oad Document Menu Action
and load ExtraEcoreValidation.ocl. An additional Resource is shown in the editor tree.

Select amodel element such as the Bad package and use the right button menu to invoke Validate.

& Validation Problems Ed

I_."'_"“-.I Problems encountered during validation
e Reason:
Diagnosis of Bad

O | —

-8 The EStructural Feature:: DervationlsViolatile" constraint result is null for uncachedDerved : EBoalean”

This shows an error. Depending on the order in which the constraints are evaluated, you may also see
one or two warnings. Y ou should use the Validity View to see al failures.

If we now open Ecor€eT estFile.ecore with the OCLinEcore editor we can see that the transient and
volatile keywords are indeed missing.

Eclipse OCL 5.0 107

Tutorials

package Bad : pfx =
"platform: /resource/org.eclipse.ocl.examples. project. completeoccltutorial/model/Bad. ecore’

1
class BadClass
attribute uncachedDerived : Boolean { derived }
1
derivation: true;
}
¥
¥

4.2.8. Editing the Complete OCL

Y ou may edit the Complete OCL to experiment with alternate constraints or messages.

However the Complete OCL complements the meta-model and EMF does not support live modification
of meta-models. It is therefore necessary to restart the Sample Ecore Editor and Reload the modified
Complete OCL document in order to exploit the changes.

A solution for this may occur in afuture release.

4.2.9. Example Complete OCL complements for UML

The extension of the Sample Ecore Editor validation described in Validating Ecore with additional
Complete OCL is applicable to any tree editor generated by EMF tooling.

The ExtraUML Validation.ocl file provides a very simple style check that class names start with an
upper case letter.

import uml : ‘http:/Swew.eclipse.org/uml2/4.0.8/UNLES"

context uml::Class

* The first letter of a classname should be uppercase.
inv CamelCaseName: name.gt({l)=name.at(l).tolpperCase()

The UML meta-model is imported and an invariant is specified for the Class classifier which is fully
qualified to avoid the need for a surrounding package context declaration.

You may open the PapyrusTestFileuml with the UML Model Editor, load the
ExtraUML Validation.ocl, select the M odel and then Validatein the sameway asfor the Ecoreexample.

= Validation Problems Ed
I Problems encourtered during validation

Reason:
Diagnosis of <Model> Model

0K |[<<Detais |

------ & Class:CamelCaseMame’ constraint is not satisfied for "<Class» lowercase”

Unfortunately, this failure is not shown directly in the Luna release; you can see the warning using the
Validity View.

In Juno, The Papyrus UML editor does not use the EValidator framework and so loading Complete OCL
documents into Papyrus fails to enhance validation capabilities.

At the time of writing, just before Luna, the underlying Papyrus problem has been cured but a minor
problem remains. It is not clear whether thiswill be fixed in Papyrus 1.0.0.

Eclipse OCL 5.0 108

Tutorials

4.2.10. Example Complete OCL complements for Xtext

Xtext editors use EValidator and so a Complete OCL document may be loaded into an Xtext editor,
including Xtext itself, to provide enhanced validation.

The ExtraXtextValidation.ocl file provides some demonstration style checks.
import ‘http://wew.eclipse.org/2008/ Xtextd/"
package xtext

context ReferencedMetamodel
inv NofnonymousImports: aligs <> null

context Action
inv Nofctions : false

context Parserfule
inv CamelCaseName : name.matches('[A-Z][A-Za-z]*")

context xtext::TerminalRule
inv UpperName : name = name.toUpperCase()

endpackage

The Xtext root package is imported and within the package declaration context for the xtext package,
invariants are supplied for four classes. These are all just examples of how constraints may use the Xtext
model. It is not suggested that users should use al of these constraints for real grammars.

4.2.10.1. NoAnonymouslimports

cont ext Ref erencedMet anodel
i nv. NoAnonynousl nports: alias <> null

Thisinvariant diagnoses whether any import statements omit theas xxxx model name.

4.2.10.2. NoActions

cont ext Action
inv NoActions : false

Thisinvariant diagnoses whenever an { xxx} action statement is used.

4.2.10.3. CamelCaseName
cont ext ParserRul e
inv Canel CaseNane : nane. matches('[A-Z][A-Za-z]*')

Thisinvariant verifies that the name of a parser rule starts with an upper case letter and uses only letters.

4.2.10.4. UpperName
context xtext::Term nal Rul e
inv Upper Name : name = nane.toUpper Case()
Thisinvariant verifies that the name of aterminal rule is uppercase.

You may open the XtextTestFilextext with the Xtext Editor, load the ExtraXtextValidation.ocl and
then Validate in the same way as the Ecore example.

The additional validations appear as warning markers in the editor.

PrimaryExpression returns Expression:
"(' Expression ')' |
(e {NumberLiteral} walue=NUMBER |
() {FunctionCgll} func=[dbstractDefinition] ('(' args+=Expression (',' args+

| & "Action::NoActions” constraint is not satisfied for
ter 'org eclipse xtext impl ActionImpl @121d174{platform /resource forg eclipse ool examples project comp
leteochutoral /model Stext Test Fle et #/0/ @rules. 11/ @atematives/ @elements .2/ @elements. 0}
terminal 1N Feturns ecore..Flnt: —

"+hic nna hars haan daartiuatad’ -

Eclipse OCL 5.0 109

Tutorials

Unfortunately Xtext does not have a nice toString() method for its Concrete Syntax
tree so the descriptions of erroneous elements are a little inelegant.

Y ou may edit the Xtext test file to deletethe “asecore” in theimport statement and see that the additional
Complete OCL constraints are contributing to the ongoing functionality of the editor.

4.2.11. Complete OCL Editor

The Complete OCL editor is invoked automatically for an existing or new *.ocl file. Y ou can create an
empty file using either New->File or a partial content file using New->Other ... followed by OCL and
Complete OCL File. The editor is Xtext-based and so has most of the facilities that you find in many
other Eclipse editors.

4.2.12. Royal and Loyal Example

The Royal and Loyal Example was first provided by Jos Warmer and Anneke Kleppe in The Object
Constraint Language: Getting Your Models Ready for MDA and has subsequently been used in many
tutorials. The example provides substantial examples of Complete OCL and Essential OCL. The models
are available by invoking New->Example...->OCL (Object Constraint Language) Plugins.

4.2.13. Summary
To illustrate how to work with Complete OCL we have
» Examined the Complete OCL language
» Examined constraints to rectify inadequate Ecore validation of derived features
» Loaded Complete OCL constraints to enhance validation of an Ecore model
* Loaded Complete OCL constraints to enhance validation of a UML model
* Loaded Complete OCL constraints to enhance validation of an Xtext grammar

4.3. Code Generation tutorial

Thistutorial has been updated for Eclipse Luna: Eclipse 4.4, EMF 2.10, OCL 5.0.
» Some screenshots may be slightly out of date.

The direct OCL to Java Code generator was avery experimental functionality for the Juno release. It has
been substantially rewritten for Kepler. Some optimisations have been activated for Luna.

In thistutorial we will continue the OCLinEcoretutorial and show how to get adirect Java representation
of the Ecore model avoiding the need for run-time compilation.

4.3.1. Load OCLinEcore Tutorial Example Project

All the material for this tutorial is available as part of the OCLinEcore Example project that you may
load by selecting New then Example... using the right button context menu of the Project Explorer. This
should give the New Example dialog in which you can select the OCL (OCL Constraint L anguage)
Plugins and the OCLinEcore Tutorial.

4.3.2. Direct code

In Generating Java Code we saw how to create agenmodel and how to generate code from it that realizes
OCL astext strings in the Javaimplementation files. These text string are lazily compiled at run-time.

Whether to generate OCL astext strings for interpretation or to convert directly to Javais determined by
the Code Generation Mode. This may be configured using the project property or workspace preference
as described in Code Generation Mode. So use Window->Pr eferences->OCL to change the setting to
Generate Java code in xxxBodies classes.

Now open Tutorial.genmodel, select theroot resource and invoke Gener ate M odel Codeto (re)generate
the Java code. This will take somewhat longer as additional work items show that the OCL is being
compiled and that Xtend templates are generating additional Java code.

Eclipse OCL 5.0 110

Tutorials

Note that you must close Tutorial.genmodel while changing the Code Generation
Mode.

You may also need to delete the autogenerated *Impl files if you change from one
mode of generation to another.

That isall thereisto it. Your model codeisnow 100% Java; no OCL parsing is needed at run-time.

4.3.3. Using a GenAnnotation

Changing the default genmodel setting is a little dangerous since the change will affect any other
genmodel activities you perform. It istherefore advisable to reset the workspace preference setting to its
default and use a GenAnnotation to embed the setting in the genmodel.

The easiest way to create the GenAnnotation that ensure direct code generation regardless of workspace
or project preferences, is to paste the following three lines into your genmodel just above the
f or ei gnModel or genpackages element.

<genAnnot ati ons source="http://ww. ecl i pse. org/ OCL/ GenModel ">
<detai |l s key="Use Del egat es" val ue="fal se"/>
</ genAnnot at i ons>

Of course, if you want to enforce delegation you should set theval ue tot r ue.

If you don't like cutting and pasting into XM files, you can achieve the same effect with the GenModel
editor by:

» Enable annotation display using Gener ator->Show Annotations
 Invoke Annotate from the right button context menu of the genmodel root element

» Usethe Properties View to set the GenAnnotation sourcetoht t p: / / www. ecl i pse. or g/ OCL/
GenModel

* Invoke Add Detail from the right button context menu of the GenAnnotation
» Usethe Properties View to set the Detail key to Use Del egat es
» Usethe Properties View to set the Detail valueto f al se

[ta) Tutorialgen &3 *: = 0O ||El Propeties 52 =§'|E g ¥ = O

—+

=B Tutoral Property | Value

E---l‘].ﬂ zenModel References

i B Use Delegates - false Source 1= hitp:/fwww eclipse.org/OCL/GenModel

=88 Tutorial
. H Lbrary
- H Book
- H Member
E Loan

- -

A further “Use Null Annotations” GenAnnotation may be used to control whether @NonNull and
@Nullable annotations are emitted in the generated code.

<genAnnot ati ons source="http://ww:. ecl i pse. org/ OCL/ GenModel " >
<detai |l s key="Use Del egat es" val ue="fal se"/>
<details key="Use Null Annotations" value="true"/>

</ genAnnot ati ons>

4.4. Debugger tutorial

Thistutorial was written for Eclipse Luna: Eclipse 4.4, EMF 2.10, OCL 5.0.
» Some screenshots may be slightly out of date.

Inthistutorial wewill continuethe OCLinEcoretutorial and show how to usethe OCL debugger to debug:

Eclipse OCL 5.0 111

Tutorials

* constraints typed manually in the Console View
» embedded OCLinEcore validation failures from the Validity View
» Complete OCL validation failures from the Validity View

4.4.1. Load OCLinEcore Tutorial Example Project

The material for thefirst two parts of thistutorial isavailable as part of the OCLinEcore Example project
that you may load by selecting New then Example... using the right button context menu of the Project
Explorer. This should give the New Example diaog in which you can select the OCL (OCL Constraint
Language) Plugins and the OCLinEcore Tutorial.

The material for the third parts of this tutorial is available as part of the CompleteOCL Example project
that you may load in asimilar way.

4.4.2. The OCL Debugger

The OCL debugger is a customization of the Eclipse debugger framework, so most of its functionality
should present few surprises to those familiar with the Java debugger.

Thereis:

» aStack View that shows the current line number in nested Evaluation Environments

» aVariables View in which local and intermediate variables can be re-examined

« an Editor in which the source is highlighted to show the next AST node to be evaluated
 an Outline in which the source is shown in tree form

* aBreakpoints View in which breakpoints can be controlled

We will demonstrate some of these facilities by debugging a simple example.

4.4.3. Very Simple Debug session

We will debug the execution of the OCL expression self.name on an EPackage.

4.4.3.1. Starting the debugger
Doubleclick on model/T utorial .ecor eto open the model and expand the top entry to show the EPackage.

[%] 4500-debugger-tutorial textile & Tutorial.ecore &3 = 0

4] platform:/resource/org.eclipse.occl.examples.project.cclinecoretutorial/model/ Tutorial.ecore
a4 # tutonal
. flm Ecore
. B Library
. B Bock
. B Member
- H Loan

If the model opens with another editor, close it, and open with the Sample Ecore Editor by selecting
model/T utorial.ecor e and then Open With->Sample Ecore Model Editor from the context menu.

Select the tutorial EPackage and invoke OCL ->Show Xtext OCL Console from the context menu.
(Wait a second or two.)

At the bottom of the Console window type self.name, then hit the Enter key. Then hit the Page Up key
to redisplay your entry.

Eclipse OCL 5.0 112

Tutorials

[#] *4500-debugger-tutorial.textile #] Tutorial.ecore 3 = 0

a4] platform:/resource/org.eclipse.ocl.exarmples.project.cclinecoretutorial /model/Tutorial.ecore
4 f# tutonal
. flm Ecore
. H Library
- H Bock
- H Member
- H Lean

= Console &2 ZEBJ:%%%?|=‘E':=J'G':E
Xtext OCL for 'tutorial' : EPackage

Evaluating: ~
self.name

Results:

"tutorial’

selF.numel

The Console runs an evauation automatically after hitting Enter and shows the evaluation result:
"tutorial’.

The Console View provides the two pieces of information necessary to run the OCL debugger:

» an EObject to be used as OCL’s self; the Console shows the current selection just below its tool bar
» an OCL expression to execute

Start the debugger by clicking the debug icon in the Console View tool bar. (Wait a second or two.)

The debugger should appear automatically. If it doesn’t, your start-debugger-automatically-on-resume
preference hasinhibited it. Y ou can open the Debug perspective manually by invoking Window->Open
Per spective->Debug from the Eclipse menu bar.

4 Debug &2 2 Type Hierarchy ~ = B |[#*=Variables &% . % Breakpoints = 0
4 [0] test [OCL Expression] £ B | [
4 [] ExpressioninOCL [debug_UsLPeQiqEeOz5trTjczCww.ocl] - test Mame Value A
a f Thread [main] (Suspended] ® 5 ivot:VariableExp @3f3a24d
= ecore:EPackage:oclDebuggerExpression() - debug_UsLPcQigEeQzStrTjczOww.ocl line 5 . pe pivot:Variavietxp 2
z . @ self ecore:EPackage @4053ad71 ¥
Lo < >
self
[%] 4500-debugger-tutorial.t #| Tutorial.ecore [6] debug_UsLPeOiqEeDzstrT 52 = O |gE Outline 22 =& - = 8
import ‘http://www.eclipse.org/emf/2882/FEcore’ 4 [0 platform:/resource/C:/Development/Chital/Workspace/.r

b 4 [EPackage
context ecore::EPackage .)
def: oclDebuggerExpression() : OclAny = - & UCIDEbquETEXprESS'UHO : OclAny
self.name 4 [| <ExpressioninOCL>
4 [=] name: String

[R TR R

. [E] name: String
[i#] self : EPackage
. Qclany
» B3 ecore

< >

A Complete OCL document is created automatically to encapsulate the OCL expression inside as an
additional operation for the type of the self object. This document is shown in the editor; it is readonly.
self is highlighted since the next evaluation to perform is to evaluate the VariableExp AST node that
performs the self access.

The stack display showsthe context asline 5 of oclDebugExpression() in the synthesized Complete OCL
document.

The Variables View shows two variables.
» sdf isthe OCL self object
» $pcisasynthetic variable representing the current Program Counter

Eclipse OCL 5.0 113

Tutorials

The Outline View currently displays the OCL Concrete Syntax tree; you may choose to close this view.
In afuture release it may change to support breakpoints and the Abstract Syntax Tree.

4.4.3.2. Exploring Variables

The Variables View provides an ability to drill down arbitrarily to examine the data available to your
program.

The left column of the display presents the name of avariable and may be expanded to navigate to parts
of the data referenced by the variable. Part name displays are currently shown 0-based, rather than 1-
based asin OCL.

The right column variously displays the type of parts that can be expanded and the values of those that
cannot. An OCL syntax is used so Strings appear in single quotes and Collections use names such as
OrderedSet.

The bottom line shows a textual rendering of the selected variable. For many types of data a helpful
rendering is available. For othersthe fallback is to the default Java toString() functionality.

Click on the expand/collapseicon to theleft of $pc to expand it and allow inspection of the OCL AST. A
VariableExp is next to execute and its $pc.referredVariable or $pc.type may be examined to see more
program detail.

Click on the expand/collapseiconto theleft of self, whichisan ecor e:: EPackage, to expand it and shows
itsfields such asname whichis'tutorial’.

Click on the expand/collapse icon to the left of self.eClassifiersto show the four classifiers.

Select self.eClassifierg[1] so that the bottom line display shows that the second is named Book.

45 Debug 2 Type Hierarchy ~ = B ||#=Variables £ . % Breakpoints = 8
4 0] test [OCL Expression] = | [
4 [] ExpressioninOCL [debug_UsLPcQiqEeOz5trTjczCww.ocl] - test

Name Value G
4 g Thread [main] (Suspended) A t:VariableExp @3f3a2dd
= ecorentPackagerociDebuggertx - debug_UsL PcQiqEe0zStrTjczQuav.ocl liner 5 |17 *PE ey
) ecoreEPackageociDebuggerExpression() - debug_UsLPcQigEe0z5trTjcz ocl line o o ccorexEPackage @A053adT1 ¥
Lo < >
self
[%] 4500-debugger-tutorial.t #] Tutorial.ecore [0 debug_UsLPcOigEeOzstrT 53 = 8 (5= Outline =& - = 8
1 import ‘http://www.eclipse.org/emf/2602/Ecore’ 4 |0 platform:/resource/C:/Development/Chital/Workspace/.r
2 4 Q EPackage

3° context ecore::EPackage 4 i oclDebuggerExpression() : Oclany

4 [| <ExpressioninOCL>
4 [=] name: String

4= def: oclDebuggerExpression() : OclAny =
¥ 5 self.name

. [E] name: String
[1#] self : EPackage
S Ocliny
E3 ecore

< >

The Variables View provides more insight that the Sample Ecore Properties View, so you may find it
convenient to use atrivial OCL debugger session using self as the OCL expression to browse arbitrary
model data.

4.4.3.3. Stepping Execution

Click F5 or the Step Into icon to advance execution by one AST node eval uation.

Eclipse OCL 5.0 114

Tutorials

+ Debug 52

Tg Type Hierarchy

4 [0] test [OCL Expression]

4 [| ExpressioninOCL [debug_UsLPcQiqEeOz5trTjczCww.ocl] - test

[%] *4500-debugger-tutorial.te
import- "http://www.eclipse.org/emf/2062/Ecore”

T AT T

4 P Thread [main] (Suspended)

- = g

= ecore:EPackage:ociDebuggerExpression() - debug_UsLPcOiqEe0z5trTjczOww.ocl line: 5

5

context - ecore: :EPackage
def: oclDebuggerExpression()
self.name

#| Tutonal.ecore

i OclAny =

[0] debug_UsLPcOigEeOzStrTjcz &2

=

(%)= Variables 3 . % Breakpoints = 8
EE|w -
MName Value
4 © Spc pivot:PropertyCallExp @3c0d3819
= extension Set(ElementExtension[*)[0]

implicit
isPre

o
o

= isRequired
o isStatic
= name

= navigationSource
= ownedAnnotation

= ownedComment

false

false

false

false

null

null
OrderedSet(Element[*])[0]
Set(Comment[*])[0]

= qualifier OrderedSet{OCLExpression[*])[0]
» o= referredProperty pivot:Property @55474d2c
- o> source pivot:VariableExp @3f3a24d
. o= type pivot:PrimitiveType @4779d6%
> @ Ssource ecore:EPackage @4053ad71
> @ self ecore:EPackage @4053ad71

<

ecore: :ENamedElement: :name

5= Outline i3

q:pl“; - = 7

4 [0] platform:/resource/Cy/Development/Chital/Workspace/.r A

4] EPackage

4 4 oclDebuggerExpression() : OclAny
4 [| =ExpressionlnOCL>
a [E] name: String

(=1 mamne s Ctrinn

<

]
>

The editor now highlights .name and $pc shows a PropertCallyExp as the next execution.
$pc.referredVariable showsthat it is ecore::ENamedElement:name.

An additional synthetic variable $sour ce shows the result of the self evaluation that forms the source
term of the PropertyCallExp. As expected thisis the same as self.

Click F5 or the Step Into icon again to advance execution by afurther AST node evaluation.

45 Debug &2

Tg Type Hierarchy

a @ test [OCL Expression]

[w] *4500-debugger-tutorial.te
import- ‘http://www.eclipse.org/emf/2002/Ecore"

I S

4 i Thread [main] (Suspended)

4 [) ExpressionInQCL [debug_UsLPcOiqEeQz5trTjczOww.ocl] - test

- = "

= ecore:EPackagesociDebuggerExpression() - debug_UsLPcQiqEeQz5trTjczOww.ocl line: 5

E

context ecore: :EPackage
def: oclDebuggerExpression()
self.name

#] Tutorial.ecore

1 OclAny =

[6] debug_UsLPcOiqEeOzStrTjez &2

(0= Variables &3 . % Breakpoints = 8
tE e ¥
Name Value K
@ ShodyExpression ‘tutorial'
@ Spc pivot:ExpressioninOCL @275f10e
> @ self ecore:EPackage @4053ad71 w
< >
tutorial
5= Outline i3 R2[& v~ = O

a @ platform:/resource/C:/Development/Chital/Workspace/.r &

4 = EPackage

4§ oclDebuggerExpression() : OclAny
4 [| =ExpressioninQCL>
4 [=] name: String v

The whole of self.name is highlighted and $pc shows that the overall ExpressioninOCL is about to be
evaluated. The synthetic $bodyExpression for itsinput shows that self.name evaluated to 'tutorial’.

4.4.4. Debugging a Validation failure

OCL isuseful for elaborating models with additional well-formednessrules, but when these fail it can be
difficult to understand why afailure occurred, particularly if the bug isin the OCL rather than the model.
We will now show how the OCL debugger can be used to debug a validation failure.

Double click on model/Tutorial.xmi to open the model, and expand the top two entries to show some
detail.

Eclipse OCL 5.0

115

Tutorials

[%] 4500-debugger-tuterial textile & Tutorialxmi ©7 = B

a [2| platform:/resource/org.eclipse.ocl.examples.project.oclinecoretutorial/model/Tutorial xmi
4 <4 Library lib
< Book bl
4 Book b2
4 Loan
4 Loan
4 Loan
4 Member m1
% Member m2
4 Member m3
. | platform:/resource/org.eclipse.ocl.examples.project.oclinecoretutorial/model/ Tutorial.ecore

If the model openswith another editor, closeit, and open with the Sample Reflective Ecore Model Editor
by selecting model/Tutorial.xmi and then Open With->Sample Reflective Ecore Model Editor from
the context menu.

Select the first line and invoke Validate from the context menu. (Wait a second.) Optionally click on
Details.

= Validation Problems

|®| Problems encountered during validation

Reason:
Diagnosis of Library lib

o | [ccoman |

£3 The SufficientCopies’ constraint is viclated on 'Book b2'
€3 The 'AtMostTwoloans' constraint is violated on 'Member m3'

£3 The 'Uniqueloans’ constraint is violated on 'Member m3'

These error messages provide insufficient precision to really understand the problems, so click OK to
dismiss the popup then select Book b2, which has an error, and invoke OCL ->Show Validity View to
provide more insight.

4" Search | Ju JUnit | [] Properties | [+ ValidityView &3 & History| & Console = B8
validity View T B SO Br|H-~
Model Elements = | vl | E Metamodel Constraints == | vl | E
type filter text type filter text
>[5+ Library lib in platform:/resource/org.eclipse.ccl.example » [Vl 8 ecore in http://www.eclipse. org/emf/2002/Ecore |
» [¥]g 8 tutorialin platform:/resource/org.eclipse.ocl.examples.p » [v]g 8 tutorial in platform:/resource/org.eclipse.ocl examples.pr
< > < >

Click thePiniconinthe Validity View tool bar to avoid thrashing whenever you change mouse selection.

Uncheck the top ecore line in the Metamodel Constraints since we are not interested in the successful
Ecore metamodel constraints just those in the tutorial metamodel.

Similarly uncheck the bottom line in the Model Elements since we are not interested in the successful
metamodel, just those in the tutorial model.

Click on the + tool bar icon so that the detail is shown.

Eclipse OCL 5.0 116

Tutorials

4 Search | Ju JUnit | [C] Properties | [¥ ValidityView &2 £ History| E] Console = 0
Validity View = B 0| | H~
Maodel Elements el | v | %] Metamodel Constraints el | v | L=
type filter text type filter text
4 [#] 5+ Library lib in platform:/resource/org.eclipse.ocl.examples 4 [¥] 58 tutoriel in platform:/resource/org.eclipse.ocl.examples.pre
a4 [V]g< Bookbl 4 [V] 3 [H Book
[#] g tuterial:Book:SufficientCopies 4[] 3B SufficientCopies
a4 [V] 5+ Bookb2 [g 4 Library lib::Book b1
&0 tutorial:Book:SufficientCopies &% Library lib:Book b2
a4 [V]g< Membermi a4 [V] g H Member
[#] == tutorial:Member:AtMostTwoloans 4[] 3B AtMostTwoloans
V] pEa tutoriok:Member:Unigueloans [W]g 4 Library lib:Member m1
4 [#g4 Memberm2 [#]g 4 Library lib:Member m2
[V] pE= tutoriok:Member:AtMostTwoloans [W] &4 Library lib:Member m3
[#] == tutorial:Member:Uniqueloans 4 [¥] 3B Uniqueloans
a4 [V] 54 Memberm3 [W]g 4 Library lib:Member m1
[¥] 4 B tutorial:Member:AtMostTwoloans [#]g 4 Library lib:Member m2
[V] 2B tutoriok:Member:Unigueloans [W] &4 Library lib:Member m3
< > < >

We will now debug the failure of the tutorial::Book:: SufficientCopies on the Library lib::Book b2
model element. Select either of the leaf warnings, that is either the tutorial::Book:: SufficientCopies
child of Book b2 in the left hand pane, or the Library lib::Book b2 child of SufficientCopiesin the
right hand pane, and invoke Debug Single Enabled Selection. Wait a second or two and the debugger
starts. If it doesn't, open the Debugger perspective manually.

+ Debug 52 T2 Type Hierarchy = = O |[09=Variables 2 . % Breakpoints kB | e, ¥ = 0
4 [0] test [OCL Expression] Name Value "
4 [| ExpressioninOCL [debug_%aH4s0i-EeQz5trTjezOww.ocl] - test ‘ . O Spe pivat:VariableExp @518a75a0
- k
4 (i Thread [main] (Suspended) . @ self tutorial::Book @11afbef3 h
= tutorial::Book:oclDebuggerExpression() - debug_9aH4s0i-EeQzStrTjezOww.ocl line: 5 < >
5 self
L& Tutorialxmi 4500-debugger-tutorial textil [6] debug_9aH4s0i-Ee0z5tTjezQ 52 = B |[5= Outline 52 R[% v = 0O
1 dimport ‘platform:/resource/org.eclipse.ocl.examples.project.oclinecoretutoric a 4 [0] platform:/resource/C:/Development/Chital/Workspace/.m ~
2 al " 4 5 Book
3= context- tutorial::Boo
4= def: oclDebuggerExpression() : OclAny = 4 @ oclDebuggerxpression(: Oclny
» 5 Library.loans->select((book = self))->size() <= copies 4 [] <BxpressioninOCL>
& e 4 i@l <=(0cISelf : Ronlean s

< > < >

The debugger showslibrary.loans->select((book = self))->size() <= copieswith library highlighted as
the next execution. The library is a shorthand for self.library so $pc in the Variables View shows a
VariableExp for self as the next instruction.

Click F5 or Step Into and $pc advances but the editor highlight is unchanged since there is insufficient
source detail to distinguish the original self from the subsequent .library.

Click F5 or Step Into afew more times and the highlight will show the iteration within the select body,
allowing each state of each element to be examined to determine why the exhibited behavior occurs.

Continueto Click F5 or Step Into until ->size() is highlighted.

Eclipse OCL 5.0 117

Tutorials

45 Debug &2 T2 Type Hierarchy = = O |[t9=Variables &3 . % Breakpoints = | [= |
a (0] test [OCL Expression] Mame Value
4 [| ExpressioninOCL [debug_9aH4s0i-EeQz5trTjezQuw.ocl] - test ‘ » O Spe pivot:OperationCallExp @733e53¢F
a o E"EEd [main] (Suspended) 4 @ Ssource Setftutorial::Loan)[3]
) = tutorial:Book:oclDebuggerExpression() - debug_9aH4s0i-EeQz5trTjczQww.ocl line: 5 P tutorialzLoan @35E5056
Lo » o= book tutorial::Book @11afbef3
= date null
» o= member tutorial:Member @b798015
a4 4 [1] tutorial:Loan @29214c97
» o= book tutorial::Book @11afbef3
= date null
» o= member tutorial:Member @b798015
a4 4 2] tutorial:Loan @492b629%
» o= book tutorial::Book @11afbef3
= date null
» o= member tutorial:Member @b798015
- @ self tutorial::Book @11afbef3
< >

self.library.loans->select(1l_ : tutorial::lLean[?] | 1

< >
& Tutorialxmi [%] *4500-debugger-tutorial.textile [6] debug_9aH4s0i-EeOzStrTjezQuaw &2 = 8 |[5 Outline 52 =d - = 8
1 import 'platform:/resource/org.eclipse.ocl.examples.project.oclinecoretutorial/m A 4 [+ select(T) : Set ~
2 4 j@) =(0clSelf) : Boolean
3= context - tutarial : : Book 4 @) ~(OclSel) : Boolean
4= def: - oclDebuggerExpression()- : - OclAny-= @ -)
» s Library.loans->select|(|(book = self))->size() <= copies o 4@l [:EOCISEIH :Boolei
- = et Ao
< 2> <

Expanding $source in the Variables View shows the Set of three selected Loans each of which has the
same book as self.
Click F5 or Step Into three more times until <= is highlighted.

Debug &2 Type Hierarch: = = O |[t9=Variables &3 . % Breakpoints =R = =0
4 Debug s y P
a (0] test [OCL Expression] Name Walue
4 [| ExpressioninOCL [debug_9aH4s0i-EeQz5trTjezQuw.ocl] - test © Sargument]0] 2
P k
P EHEEC' [main] (Suspended) . @ Spc pivot: OperationCallExp @643cde]
= tutorial:Book:oclDebuggerExpression() - debug_9aH4s0i-EeQz5trTjczQww.ocl line: 5 @ Ssource 3
LS > @ self tutorial::Book @11afbef3
< >

org.eclipse.emf.ecore.impl.DynamicEObjectImpl@llafbet

4 Tutorialxmi [#] *4500-debugger-tutorial.textile [6] debug_9aH4s0i-Ee0zStrTjezQuw 53 = B |[5= Outline 52 & v = 8
1 import ‘platform:/resource/org.eclipse.ocl.examples.project.oclinecoretutorial/m ~ 4 [] <ExpressioninOCL> ~
‘ 4 [@ <=(0clSelf) : Boolean
3° context tutorial::Book 5 copies: Integer
4= def: oclDebuggerExpression() : OclAny = ples: 9

» s Library.loans->select((book = self))->size() <= copies 4 @) size() : Integer
L3 e a] select(T) : Set ©

< > < >

We can now see that the $sour ce, left hand side, of the comparison is 3 and the $argument[0], right
hand sideis 2. A further step and we seetheresult as $bodyExpr ession demonstrating why the validation
failed.

4.4.5. Debugging Complete OCL validation failure
The two preceding examples displayed their source text in a synthesized Complete OCL document.
In this example we debug afailurefir which the OCL is already availablein a Complete OCL document.
Open the model/Ecor eT estFile.ecor e from the Complete OCL project using the Sample Ecore Editor.

Within the Ecore editor use OCL->Load Document and then drag and drop model/
ExtraEcoreValidation.ocl and click OK to dismiss the pop up.

Again within the Ecore editor use OCL ->Show Validity View to see the constraint/element pairs. If the
Validity View was already visible, close it and re-show it since in Luna addition of a Complete OCL
document fails to refresh correctly.

In the Validity View, uncheck the top two MetaModel Constraint contributions retaining just the
ExtraEcoreValidation.ocl contributions. Click the plus icon in the Metamodel Constraint tool bar to
expand all entries.

Eclipse OCL 5.0 118

Tutorials

EcoreTestFile.ecare &3 = 8

.] platform:/resource/org.eclipse.ocl.examples.project.completeochutorial/model/EcoreTestFile.ecore
- [8] platform:/resource/org.eclipse.ocl.examples.project.completeochiutorial/model/ExtraEcoreValidation.ocl

[£1 Probl | @ Javad @Declar %" Searc | & Cons & Progr | E Prope @Error [¥ Validi &3 = O
Validity View TRt 0| F-|H-
Model Hements |3 [| 7 | %] Metamodel Constraints 7 | S | 3

type filter text type filter text
[#]g 4 <null-named-CompleteQCl 4 [#]g 8 ecore in platform:/resource/org.eclipse.ocl.examples.pro
» [#]p # Badin platform:/resource/o a [¥]s H EReference

2 4 DerivationDoesNotResolveProxies
2 4 DerivationlsNotComposed
[]2 4 DerivationWithOppositeHasOppositeDerivati
a [¥gH EStructuralFeature
4 [#] g+ DerivationlsTransient
[#] & T Bad:BadClass:uncachedDerived
4 [# g+ DerivationlsUninitialized
[#] & T Bad:BadClass:uncachedDerived
a [#g+4 DerivationlsVolatile
[#]g 7 Bad:BadClass:uncachedDerived

Select the bottom right BadClass model element below the DerivationlsVolatile constraint and invoke
Debug Single Enabled Selection. (wait a second or two). The debugger should start, if not open the
Debugger perspective manually.

45 Debug 23 ¥ = O ||t0=Variables 2 . % Breakpoints T Operational QVT Traces = g

F] @ test [OCL Expression] = | [
4 [] ExpressioninOCL [ExtraEcoreValidation.ocl] - test

Mame Value
a o Thread [main] (Suspended) = ivotsVariableExp @7573aTed
[= ecoresEstructuralFeature:DerivationlsVolatile - ExtraEcoreValic il Ll B L LT
= > @ self ecore:EAttribute @1686b02b
L=
self
< >
EcoreTestFile.ecore [6] ExtraEcoreValidation.ocl 2 = 8
7 A
* If a feature has an OCL derivation, it must be volatile; otherwise the cached value suppresses execution.
inv DerivationIsVolatile: asError(hasDerivation implies velatile)
v

< >

Both asError and hasDerivation are OCL-defined so as you step you successively navigate into the
defined property and operation.

4.4.6. Console experiments

While debugging, the original OCL expression from the Consoleis presented in a Complete OCL editor.
This editor is readonly so you cannot edit it to correct mistakes or to experiment.

You may however safely use the OCL Console to perform further experiments. Select a suitable self
object in the Variable View and cut and paste to prepare your experimental OCL expression.

In Luna, Console selections cannot be Collections so you are unfortunately restricted to single objects.

4.4.7. Longer range stepping

In the examples above we have only used F5 or Step Into.

Eclipse OCL 5.0 119

Tutorials

In principle the tedious stepping through an iteration can be avoided by F7 or Step Return which should
terminate on the popped evaluation environment at the end of the iteration. This facility has not been
adequately tested in Luna.

If you arrange for some line breaks in your source text you can use F6 or Step Next to proceed until the
line number advances. This facility has not been adequately tested in Luna. Line breaks can be added in
the OCL Console using Shift and Enter together.

4.4.8. Break points

When debugging OCL from Complete OCL documents, the original document is a suitable source for
the debugger and so line breakpoints can be set. This facility has not been adequately tested in Luna

4.5. Validation tutorial

Thistutorial was written for Eclipse Luna: Eclipse 4.4, EMF 2.10, OCL 5.0.
» Some screenshots may be slightly out of date.

The standard EMF validation facilities are very useful for avoiding model errors and work well when the
models are correct or at least nearly correct. In thistutorial we show how the Validity View can provide
greater insight into what works and what doesn't.

We will show how to
« identify all constraints applicable to a particular model element
 the constraint text
« thevalidation status
« identify all model elements constrained by a particular constraint
* the constraint text
* thevalidation status
« filter the displayed model elements and constraints
¢ by name
* by status
* by model
« by metamodel
* launch an OCL debugger for a particular model element and constraint

4.5.1. Load Complete OCL Tutorial Example Project

The material for this tutoria is available as part of the Complete OCL Example project that you may
load by selecting New then Example... using the right button context menu of the Project Explorer. This
should give the New Example dialog in which you can select the OCL (OCL Constraint Language)
Plugins and the Complete OCL Tutorial.

45.2. Load Test Model

Double click on model/XMITestFilexmi to open the model and expand the top entry to show the
EPackage.

If the model opens with another editor, close it, and open with the Sample Reflective Ecore Editor by
selecting model/Tutorial.ecor e and then Open With->Sample Reflective Ecore Model Editor from
the context menu.

Within the editor invoke OCL ->L oad Document to load model/Extr aEcoreValidation.ocl and again
to load model/ExtraXM I Validation.ocl

Eclipse OCL 5.0 120

Tutorials

& KMITestFilexmi &2 = O

. |2 platforme/resource/org.eclipse.ocl.examples. project.completeccltutonal/model ZXMITestFile xmi

. | platform:/resource/org.eclipse.ocl.examples.project.completeccltutonial/model/EcoreTestFile.ecare

. 6] platform:/resource/org.eclipse.ocl.exarmples.project.completeocltutorial/model/ExtraXMIValidation.ocl
. 6] platform:/resource/org.eclipse.ocl.examples.project.completeacltutorial/model/ExtraEcoreValidation.ocl

Y our source ResourceSet now contains four resources

» the XMITestFilexmi model

* the EcoreTestFile.ecore metamodel

* the ExtraXMIValidation.ocl additional model validation rules

* the ExtraEcoreValidation.ocl additional metamodel validation rules

4.5.3. EMF Validation
Select the XM I TestFile.xmi and invoke Validate from the context menu. Click OK to dismiss.

=) Validation Problems

! Problems encountered during validation
h,

Reason:
Diagnosis of Bad Class true

o | [eeoman |

& Wanted null ‘

Select the Ecor eT estFile.ecor e and invoke Validate from the context menu. Click OK to dismiss.

= Validation Problems

) Problems encountered during validation

Reason:
Diagnosis of Bad

o || e |

% The 'EStructuralFeature: DerivationlsTransient' constraint is violated for 'uncachedDerived : EBoolean’

€3 The 'EStructuralFeature:DerivationlsVolatile' constraint result is null for 'uncachedDerived : EBoolean’

The above results clearly show problems, but not necessarily all the problems and do not show what was
actually done. Sometimes validation of a model element terminates prematurely once an error has been
reported. On other occasions some constraints are not run and so ho corresponding errors are detected.

The above limitations are not a problem, when everything is working well, but when you have a
misunderstanding as to what is being validated, a bad day can get very much worse.

4.5.3.1. Validaty View Validation
Select OCL->Show Validity View from the editor context menu.
Theleft hand pane showsthe root model elementsin asimilar way to the Sampl e Reflective Ecore Editor.
Model Elements 18|z 0|[N

type filter text

[#] 2 < Bad Class true in platform:/resource/org.eclipse.ocl.examples. project.completescltutorial/model XMITestFilexmi

[#]7 8 Bad in platform:/resource/org.eclipse.ocl.examples.project.completeocltutorial/model/EcoreTestFile.ecore

[¥] 2 4 ExtraEcoreValidation.ocl in platform:/resource/org.eclipse.ocl.examples.project.completeocltutorial/model/ExtraEcoreValidation.ocl
[¥] 2 4 ExtraXMIValidation.ocl in platform:/resource/org.eclipse.ocl.examples.project.completeccltutorial/ model/ExtraXMIValidation.ocl

Theright hand pane shows the root metamodel constraint sources.

Eclipse OCL 5.0 121

Tutorials

Metamodel Constraints Ell 1 ||§|

type filter text

[r—

> » B Baod in platform:/resource/org.eclipse.ocl.examples. project. comp leteocltutorial/model/ExtraXMiValidation.oclecore

> o B8 basecs in http://www.eclipse.org/ocl/3.1.0/BaseCST

> o B ecore in hitp://www.eclipse.org/emf/ 2002/ Ecore

> s 8 ecore in plotformi/resource/org.eclipse.ocl examples. project. completeocitutoriol/model/ExtraEcoreValidation. ocl.ecore

Each may be expanded using the control at the start of each line or the more general controlsin the tool
bars.

Important tip: click the pin icon in the Validity Model tool bar to stop the Validity View chasing your
mouse selections.

Y ou may now obtain the more detailed validation results by clicking on the green Run icon in the main
Validation View tool bar.

[V ValidityView i3 = 0
Validity View Bty 0|~ |E-~
Model Elements = | O | %] Metamodel Constraints = | O |]
type filter text type filter text
» [#] 4+ Bad Class true in platform:/resource/org.eclipse.ocl.examy > [¥] 4 # Bad in platform:/resource/org.eclipse. oclexamples.proje
+ [¥]p 8 Bad in platform:/resource/org.eclipse.ocl.examples.projec » [¥lg 8 basecs in https/Ywww.eclipse.org/ocl/3. 1.0/BaseCST
» [#]g <+ ExraEcoreValidation.ocl in platform:/resource/org.eclipse > [8 ecore in http://www.eclipse.org/emf/2002/Ecore
+ [l <% ExtraXMiValidation.ocl in platform:/resource/org.eclipse.o » [W]p 8 ecore in platform:/resource/org.eclipse.ocl examples. proj
< > < >

Use the hover text to see how many validations have been rounded up into each root display.

4.5.3.2. Filtering by Root Models
There are 36 resultsin total, which is more than we want to look at, even for this very small model.

The ecore in http://lwww.eclipse.or g/femf/2002/Ecor e root constraint is contributing 30 successes
without problem, so we ignore it by unchecking the enable checkbox preceding it.

The basecs in http://www.eclipse.org/ocl/3.1.0/BaseCST root constraint similarly contributing 2
successes without problem, so we ignore it as well by unchecking the enable checkbox preceding it.

The model is so simple that we can now expand it completely. Click on the + expand icons.

[V ValidityWView &3 = 0
Validity View 2| 0|~ |H~
Model Elements = | O | %] Metamodel Constraints = | O | b
type filter text type filter text
4 [#] g+ Bad Class true in platform:/resource/org.eclipse.ocl.examy a & Bad in platform:/resource/org.eclipse. oclexamples.proje
&+ Baod:BadClass:Unchached Derivedishull Pl & B BadClass
4 [#]p 8 Bad in platform:/resource/org.eclipse.ocl.examples.projec a &% UnchachedDerivedlsNull
4 [V]pH BadClass [w] &+ Bad Class true in platform:/resource/org.
a g 7 uncachedDerived a [J]p # ecore in platform:/resource/org.eclipse.ocl.examples. proj
&% ecore:zEStructuralFeature:DerivationlsTrans Pl » B EReference
&+ ecorezEStructuralFeaturexDerivationlsUnini » 4 DerivationDoesMotResolveProxies
g+ ecorexEStructuralFeature:DerivationlsVolat 9 4 DenivationisNotComposed
g () EBoolean » 4 DenivationWithOppositeHasOppositeDerivatic
miE hitp:/fwww.eclipse.org/emf/2002/Ecore/OC a [Vlp B EStructuralFeature
[#]gfia http:/Awww.eclipse.org/emf/2002/Ecore Pl i, 4 DerivationlsTransient
milE hitp:/fwww.eclipse.org/emf/2002/GenModel & T Bad:BadClass:uncachedDerived
[#]g 4 ExtraEcoreValidation.og ==t L = I T T T T L

Location: platform:/resource/org.eclipse.ocl.examples. project.completeocltutorial /model/ExtraEcoreValidatic
& Expression: hasDerivation implies defaultValue.ocllsUndefined()
0 oks, 1 warning

[W]g 4 ExtraXMIValidation.ocl

NTH 5 Do BauCIass UNCaCETDENTveEDT T

Y ou can hover over constraints to see the details and invoke Show In Editor to navigate to them.

Eclipse OCL 5.0 122

Tutorials

4.5.3.3. Filtering by Status

The many successes are often of limited interest, so we may concentrate on Errors by invoking Show all
Errorsfrom the Filtering pull down towards the right of the main Validation View tool bar.

[¥ ValidityView &2 = g

Validity View
Model Elements

type filter text

4 [V]g# Badin platform:/resource/org.eclipse.ocl.examples.projec

a4 [JgH BadClass

+—|/

a g § uncachedDerived
g+ ecorexEStructuralFeature:DerivationlsVolat

JES

type filter text

Metamodel Constraints

Of*~|E-~
I[N

Gl

a4 [V]p ® ecore in platform:/resource/org.eclipse.ocl.examples. proj
a [l B EStructuralFeature

a4 [Vlp < Derivationls\olatile
[#]p 7 Bad:BadClass:uncachedDerived

< > < >

Having found an error of interest we can see it in context. Select the error, remove the Show all Errors
filtering, and enable the view of all constraints by clicking the tick icon in the Model Constraint pane
tool bar.

This shows the error, two warnings and seven Successes.

Double clicking on the erroneous child constraint makes the constraint visible in the right hand pane,
showing that the constraint is only applied to this one model element.

4.5.3.4. Debugging constraints
Maybeit’ stimefor some debugging. Select theleaf constraint below amodel element, or the leaf element
below aconstraint and invoke Debug Single Enabled Selection to start the OCL debugger to step through
the problematic constraint on the problematic model element. (Select the debugger perspective explicitly
if it doesn’t open automatically.)

Use of the OCL debugger is described in the Debugger Tutorial.

* Debug 2 = = O |®=Variables £2 % Breakpoints 5i: Operational QVT Trace = 0
4 [0] test [OCL Expression] W= ‘ [
4 [| ExpressioninOCL [ExtraEcoreValidation.ocl] - test
MName Value
4 # Thread [main] (Suspended) ® S N VariableExp @2F08CT6
E ecore:EStructuralFeature:DerivationlsVolatile - ExtraEcoreValidation.ocl line: 41 @ =pe pivet: arla. e O <
5 4 O self ecore::EAttribute @46adBfde
B
= changeable true
= defaultValue false
= defaultValueliteral null
= derived true

- =+ eAnnotations
= 0 - =+ eAttributeType

OrderedSet(EAnnotation[*])[1]
ecore:EDataType @716abcb8
ecore:EClass @2487aale
ecorezEGenericType @453fd606

@ ExtraEcoreValidation.ocl &2

- u ftrn HWs W UeE wer SVGLEUny S Snwad Do o wnSan ey

~ » =+ eContainingClass

36 inv DerivationIsTransient: hasDerivation implies transient - = eGenericType

37 - o= eType ecore:EDataType @716abcb8

3ga e = iD false

53 :‘If a feature has an OCL derivation, it must be volatile; ctherwise the = lowerBound 1

% 41 inv DerivationIsVolatile: asErrer(hasDerivation implies velatile) = many false -

42 = name ‘uncachedDerived'

43 = ordered false

4 * If a feature has an OCL derivation, it should not also have a default = required true

45 . . o = transient false

46 inv DerivationIsUninitialized: hasDerivation implies defaultVolue.oclIsUr .

1 = unigque true

48 = unsettable false

49 * Extra wvalidation for just EReference. = upperBound 1

e */ = volatile false

51 context EReference

52 v org.eclipse.enf.ecofje. impl. EAttributeImpl@46adsfde (name
< > < >

4.6. Working with Classic OCL

4.6.1. Overview
Thistutorial illustrates the various services provided by the Classic Eclipse OCL implementation.

4.6.2. References

Thistutorial assumesthat the reader isfamiliar with the Eclipse extension point architecture. Thereisan
abundance of on-line help in Eclipse for those unfamiliar with extension points.

Eclipse OCL 5.0 123

Tutorials

To see the complete source code for the examples shown in this tutorial, install the OCL Interpreter
Example plug-in into your workspace.

Other references:

» For an environment in which to test the OCL expressions that you will create in this tutoria, install
the Library Metamodel example.

e OCL 2.0 specification.

4.6.3. Parsing OCL Expressions

Thefirst responsibility of the OCL interpreter isto parse OCL expressions. One of the purposes of parsing
an expressionisto validateit: if it can be parsed, it iswell-formed (the parser automatically validates the
expression against the semantic well-formedness rules).

The main entrypoint into the OCL API isthe OCL class. An OCL provides an autonomous OCL parsing
environment. It tracks all constraints that are parsed in this environment, including the definitions of
additional operationsand attributes. The OCL. newl nst ance() factory method isused to create anew
OCL with an Envi r onment Fact or y that provides the binding to a particular metamodel (Ecore or
UML). In thistutorial, we will use the Ecore binding.

To parseaquery expression, wewill usethe OCLHel per _object, which provides convenient operations
for parsing queries and constraints (intended for processing constraints embedded in models).

bool ean vali d;
OCLExpr essi on<EC assi fier> query = null;

try {
// create an OCL instance for Ecore

OCL<?, EC assifier, ?, ?, ?, ?, ?, ?, ?, Constraint, EC ass, Ebject> ocl;
ocl = OCL.new nstance(EcoreEnvi ronnent Fact ory. | NSTANCE) ;

/1 create an OCL hel per object
OCLHel per<EC assifier, ?, ?, Constraint> hel per = ocl.createOCLHel per();

/1l set the OCL context classifier
hel per. set Cont ext (EXTLi br aryPackage. Literal s. WRI TER) ;

query = hel per.createQuery("sel f.books->collect(b : Book | b.category)->asSet()");

/'l record success
valid = true;
} catch (ParserException e) {
/1 record failure to parse
valid = fal se;
Systemerr.println(e.getlLocali zedMessage());

}

The example above parses an expression that computes the distinct categories of Book s associated with
aW i ter. The possible reasons why it would fail to parse (in which case a Par ser Excepti on is
thrown) include:

* syntactical problems: misplaced or missing constructs such as closing
parentheses, variable declarations, type expressions, etc.

» semantic problems. unknown attributes or operations of the context
type or referenced types, unknown packages, classes, etc.

4.6.4. Parsing OCL Constraints

OCL is primarily intended for the specification of constraint s. Unlike queries, there are a variety of
different kinds of constraints used in different places in a model. These include classifier invariants,
operation constraints, and attribute derivation constraints. The OCLHel per can parsethesefor us.

Let’simagine the confusion that arises from alibrary that has more than one book of the same title (we
are not intending to model copies). We will create an invariant constraint for @Book@s stipulating that
thisis not permitted:

Eclipse OCL 5.0 124

../references/examples/exampleOverview.html
http://www.omg.org/spec/OCL
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/OCL.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/helper/OCLHelper.html

Tutorials

Constraint invariant = null;

try {
/! set the OCL context classifier

hel per . set Cont ext (EXTLi br ar yPackage. Li t er al s. LI BRARY) ;

i nvariant = hel per.createl nvari ant (
“Library.alllnstances()->forAll(bl, b2 | bl <> b2 inplies bl.title <> b2.title)");
} catch (ParserException e) {
/1 record failure to parse
Systemerr.println(e.getlLocal i zedMessage());

}

Parsing constraints differs from parsing query expressions because they have additional well-formedness
rules that the parser checks. For example, an invariant constraint must be boolean-valued, an attribute
derivation constraint must conform to the type of the attribute, and such constructs as @pre and
ocl I sNew() may only be used in operation post-condition constraints.

4.6.5. Evaluating OCL Expressions and Constraints

More interesting than parsing an OCL expression or constraint is evaluating it on some object. The
Query_interface provides two methods for evaluating expressions. Queries are constructed by factory
methods on the OCL class.

o« (bj ect eval uat e(Obj ect)

evaluates the expression on the specified object, returning the result. The caller is expected to know the
result type, which could be a primitive, ECbj ect , or a collection. There are variants of this method
for evaluation of the query on multiple objects and on no object at al (for queries that require no "self"
context).

* bool ean eval uat e(Qbj ect)

Thismethod evaluates aspecial kind of OCL expression called aconstraint. Constraints are distinguished
from other OCL queries by having aboolean value; thus, they can be used to implement invariant or pre/
post-condition constraints. There are variants for checking multiple objects and for selecting/rejecting
elements of alist that satisfy the constraint.

In order to support theal | I nst ances() operation on OCL types, the OCL APl providesthe

set Ext ent Map(Map<CLS, ? extends Set<? extends E>> extent Map) method. This
assigns amapping of classes (inthe Ecore binding, ECl ass es) to the sets of their instances. By default,
the OCL providesadynamic map that computesthe extents on demand from the contentsof aResour ce.
An aternative extent map can befoundin or g. ecl i pse. ocl . ecor e. opposi t es. Ext ent Map
. We will use a custom extent map in evaluating a query expression that finds books that have the same
title as a designated book:

Eclipse OCL 5.0 125

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/Query.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/Query.html#evaluate(org.eclipse.emf.ecore.EObject)
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/Query.html#check(org.eclipse.emf.ecore.EObject)
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/OCL.html#setExtentMap(java.util.Map)
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/ecore/opposites/ExtentMap.html

Tutorials

/] create an extent map

Map<EC ass, Set<? extends EQbj ect>> extents = new HashMap<EC ass, Set<? extends EObhject>>(
Set <Book> books = new HashSet <Book>();

ext ent s. put (EXTLi braryPackage. Li t eral s. BOOK, books);

/! tell the OCL environnment what our classifier extents are
ocl . set Ext ent Map(extents);

Library library = EXTLi braryFactory. el NSTANCE. cr eat eLi brary();

Book myBook = EXTLi braryFactory. el NSTANCE. cr eat eBook() ;
myBook. set Titl e(" David Copperfield");
books. add(myBook) ;

/1 this book is in our library
l'i brary. add(nyBook) ;

Witer dickens = EXTLi braryFactory. el NSTANCE. createWiter();
di ckens. set Nane(" Charl es Di ckens");

Book aBook = EXTLi braryFact ory. el NSTANCE. cr eat eBook() ;

aBook. set Titl e("The Pi ckw ck Papers");

aBook. set Cat egor y(BookCat egory. MYSTERY_LI TERAL) ;

books. add(aBook) ;

aBook = EXTLi braryFact ory. el NSTANCE. cr eat eBook() ;

aBook. set Titl e("David Copperfield");

aBook. set Cat egor y(BookCat egory. Bl OGRAPHY_LI TERAL); // not actually, of course!
books. add(aBook) ;

aBook = EXTLi braryFact ory. el NSTANCE. cr eat eBook() ;

aBook. set Titl e("N chol as N ckl eby");

aBook. set Cat egor y(BookCat egory. Bl OGRAPHY_LI TERAL); // not really
books. add(aBook) ;

di ckens. addAl | (books); // Dickens wote these books
library.addAl | (books); // and they are all in our library

/'l use the query expression parsed before to create a Query
Quer y<EC assi fier, EC ass, EObject> eval = ocl.createQuery(query);

Col | ection<?> result = (Collection<?>) eval.eval uate(di ckens);
Systemout.printlin(result);

The same Quer y API isused to check constraints. Using thel i br ar y and ext ent s map from above
and the constraint parsed previously:

eval = ocl.createQuery(constraint);
bool ean ok = eval . check(library);

System out. printl n(ok);

4.6.6. Implementing Content Assist

The OCLHel per interface provides an operation that computes content-assist proposals in an abstract
form, as_Choi ce_s. Anapplication’s Ul can then convert theseto JFace's| Conpl et i onPr oposal
type.

Obtaining completion choices consists of supplying a partial OCL expression (up to the cursor location
in the Ul editor) to the _OCLHel per: : get Synt axHel p(ConstraintKind, String) ,
javalang.String) method. This method requires a Const r ai nt Ki nd enumeration indicating the type
of constraint that is to be parsed (some OCL constructs are restricted in the kinds of constraintsin which
they may be used).

Eclipse OCL 5.0 126

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/helper/Choice.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/helper/OCLHelper.html#getSyntaxHelp(org.eclipse.ocl.helper.ConstraintKind

Tutorials

hel per. set Cont ext (EXTLi br ar yPackage. Li t er al s. BOXK) ;

Li st <Choi ce> choi ces = hel per. get Synt axHel p(
Const rai nt Ki nd. | NVARI ANT,
"Book. al | I nst ances() - >excl udi ng(sel f).");

for (Choice next : choices) {

switch (next.getKind()) {

case OPERATI ON:

case S| GNAL:
/1 the description is already conplete
System out. printl n(next.getDescription());

case PROPERTY:

case ENUMERATI ON_LI TERAL:

case VARl ABLE:
System out. println(next.getName() + " : " + next.getDescription();
br eak;

defaul t:
System out. printl n(next.get Name());
br eak;

}

A sample of the output looks like:

author : Witer

title : String

ocl I sKi ndOF (t ypespec : Ccl Type)
ocl AsType(typespec : Ccl Type) : T

The choices also provide the model element that they represent, from which a more sophisticated
application can construct appropriate JFace completions, including context information, documentation,
etc.

4.6.7. Working with the AST

The OCL Interpreter models the OCL language using EMF's Ecore with support for Java-style
generic types. The bindings of this generic Abstract Syntax Model for Ecore and for UML substitutes
these metamodels constructs for the generic type parameters, plugging in the definitions of the
“classifier”, “operation”, “constraint”, etc. constructs of the OCL vocabulary. These bindings, then,
support persistence in or as an adjunct to Ecore and UML models.

For processing the abstract syntax tree (AST) parsed from OCL text, the APl supplies a Vi si t or

interface. By implementing this interface (or extending the _Abstract Vi sit or _ class, which is
recommended), we can walk the AST of an OCL expression to transform it in some way. Thisis exactly
what theinterpreter, itself, doesto evaluate an expression: it just walksthe expression using an evaluation
visitor. For exampl e, we can count the number timesthat aspecific attributeisreferenced in an expression:

hel per. set Cont ext (EXTLi br ar yPackage. Li t eral s. BOXK) ;

OCLExpr essi on<EC assi fi er> query = hel per. parseQuery(
"Book. al | I nstances()->select(b : Book | b <> self and b.title = self.title)");

AttributeCounter visitor = new Attri buteCounter(
EXTLi br ar yPackage. Li teral s. BOOK__TI TLE) ;

System out. printl n(
"Nunber of accesses to the 'Book::title' attribute:

+ query. accept (visitor));

where the visitor is defined thus:

Eclipse OCL 5.0 127

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/utilities/Visitor.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/utilities/AbstractVisitor.html

Tutorials

class AttributeCounter extends AbstractVisitor<Integer,
EC assi fier, EOperation, EStructural Feature, EEnuniLiteral,
EPar amet er, ECbj ect, EObject, EObject, Constraint> {
private final EAttribute attribute;

AttributeCounter(EAttribute attribute) {
super(0); [// initialize the result of the AST visitiation to zero
this.attribute = attribute;

}

protected I nteger handl ePropertyCal | Exp(PropertyCal | Exp<EQ assifier, EStructural Featur
I nt eger sourceResult, List<lnteger> sourceResults) {
if (call Exp.getReferredProperty() == attribute) {
/'l count one
resul t ++;

}

return result;

4.6.8. Serialization

Because the OCL expression AST is a graph of EMF objects, we can seridize it to an XM| file and
deserialize it again later. To save our example expression, we start over by initializing our OCL instance
with aresourceinwhichit will persist the environment and in which wewill persist the parsed expression.
Thekey isin the persistence of the environment: OCL defines avariety of classes on the fly by template
instantiation. These include collection types, tuple types, and message types. Other elements needing to
be persisted are additional operations and attributes that may be defined in the local environment.

/1 create a resource in which to store our parsed OCL expressions and constraints
Resource res = resourceSet. creat eResour ce(
URI . creat ePl at f or mResour ceURI ("/ MyProj ect/ nyCcl . xmi ", true);

/1 initialize a new OCL environment, persisted in this resource
ocl = OCL. new nstance(Ecor eEnvi ronnent Fact ory. | NSTANCE, res);

/1 for the new OCL environment, create a new hel per
hel per = OCL. creat eOCCLHel per();

hel per. set Cont ext (EXTLi br ar yPackage. Li t eral s. BOXK) ;

/1 try a very sinple expression
OCLExpr essi on<EC assi fier> query = hel per.createQuery("self.title");

/] store our query in this resource. Al of its necessary environment has
/1 already been stored, so we insert the query as the first resource root
res. get Contents().add(0, query);

res. save(Col | ecti ons. empt yMap());
res. unl oad();
Toload a saved OCL expression isjust as easy:

Resource res = resourceSet. get Resour ce(
URI . creat ePl at f or mResour ceURI ("/ MyProj ect/nyCcl . xm ", true),
true;

@uppr essWar ni ngs("unchecked")
OCLExpr essi on<EC assi fier> query = (OCLExpressi on<EC assifier>) res.getContents().get(0);

System out . println(ocl.eval uat e(myBook, query));

In the snippet above, we used the OCL's convenience method for aone-shot eval uation of aquery. Looking
at the contents of the XMI document that we saved, we see that the sel f variable declaration is not

Eclipse OCL 5.0 128

Tutorials

owned by the query expression, but is, rather, free-standing. The Expr essi onl nOCL metaclass solves
this problem by providing properties that contain context variable declarations, including sel f and (in
the context of operations) operation parameters.

<?xm version="1.0" encodi ng="ASCl | " ?>
<xm : XM xmi:version="2.0" xmns:xm ="http://ww. ong.org/ XM" xm ns: xsi="http://ww. w3.org
<ocl . ecore: PropertyCal | Exp xm :id="_897f VPf nEduCQ48h829a5g" >
<eType xsi:type="ocl.ecore:PrimtiveType" href="http://ww. eclipse.org/ocl/1.1.0/oclst
<source xsi:type="ocl.ecore: Variabl eExp" xmni:id="_897f Wf nEduC48h829a5g" nane="sel f"
<eType xsi:type="ecore: EC ass" href="http:///org/eclipsel/enf/exanples/library/extli b
</ sour ce>
<referredProperty xsi:type="ecore: EAttribute" href="http:///org/eclipselenf/exanples/I|
</ ocl . ecore: PropertyCal | Exp>
<ocl . ecore: Variabl e xm :id="_897f Wf nEduCQ48h829a5g" nanme="sel f">
<eType xsi:type="ecore: EC ass" href="http:///org/eclipsel/enf/exanples/library/extlibra
</ ocl . ecore: Vari abl e>
</ xm : XM >

4.6.9. Summary
To illustrate how to work with the OCL API, we
 Parsed and validated OCL expressions and constraints.
» Evaluated OCL query expressions and constraints.
 Obtained content-assist suggestions for the completion of OCL expressions.
» Transformed an OCL expression AST using the Visitor pattern.
» Saved and loaded OCL expressions to/from XM resources.

4.7. Installing the Eclipse OCL Examples and Editors

These instructions have been updated for Eclipse Luna; Eclipse 4.4, EMF 2.10, OCL 5.0.
» Some screenshots may be slightly out of date.

The OCL User Interface (console, editors, debugger and validity view) is not part of the core OCL
functionality included in the Eclipse Modeling Tools Package, so athough you may have OCL installed
and be ableto read thistutoria viathe Help->Help Contents->OCL Documentation, you may not have
the OCL examplesinstalled.

An easy way to test whether you have the OCL Examplesinstalled isto right click on a*.ecore file and
see whether OCLinEcor e Editor appearsin the Open With submenu.

If OCL isnot installed at all, or if just the examples are not installed, the following installation step will
automatically install the OCL Examplesand all required projectssuchasEMF, UML 2, MWE2, Xpand
and Xtext.

Left-click on Help in the Eclipse menu-bar then | eft-click on I nstall New Softwar e... and select theL una
—http://download.eclipse.or g/r eleases/luna update site from the pull-down menu to Work with and be
patient while the available updates are identified. Then type OCL in the filter text, click on the expand
item preceding the M odeling category and then check OCL Examples and Editors SDK.

Eclipse OCL 5.0 129

Tutorials

Available Software

Check the items that you wish to install. -:J-.__

Worde with: |Luna - http://download eclipse org/releasesduna j Add... |

Find more software by working with the "Available Software Sites” preferences.

jocL
Name | Version |
E 000 General Purpose Tools
0%+ OCL Classic SDK: Ecore/UML Parsers, Evaluator, Edil 5.0.0.v20140602-1332
E [F000 Modeling
O+ 0OCL Classic SDK: Ecore/UML Parsers, Evaluator, Edil 5.0.0.v20140602-1332

4 OCL Bxamples and Editors SDK 3.4 0.v20140602-1332
Select Al | Deselect Al | 1item selected

Details

Provides both Classic and Unified OCL and additional example projects. ;I
Install this if you plan to develop OCL-based applications. LI

Mare

¥ Show only the |astest versions of available software ¥ Hide items that are already installed
¥ Group tems by categary What is already installad?
[Show only software applicable to target environment
¥ Contact all update stes during install to find required software

(?) Bk Next > Filsi Cancel

Select Next.

Install Details

Review the tems to be installed. a——

Name Version

B9 OCL Examples and Editors SDK

1] | -+l
Size: 45436 KB

Details

Provides both Classic and Unified OCL and additional example projects. :l
Install this if you plan to develop OCL-based applications. LI

Mare
(?) < Back Next > Filsi Cancel

Select Next again and read the license agreement. Set to accept it.

Eclipse OCL 5.0 130

Tutorials

Review Licenses

Licenses must be reviewed and accepted before the software can be installed. ::J.___
Licenses: License text:
Eclipse Foundation Software User Agreement Eclipse Foundation Software User Agreement

e Tx

April 9, 2014

% | accept the terms of the license agreement
| do not accept the terms of the license agreement

|® < Back | (e | Finigh I Cancel |

Select Finish and be patient while the software is downloaded and installed. Select Restart Now when
prompted to do so.

4.7.1. Troubleshooting

Eclipse Modeling Projects have a large number of classes and so require a large amount of PermGen
space on a Sun JVM. If you are using default Eclipse startup settings you are liable to encounter
OutOfMemoryExceptions. Thereforefollow the advicein How do | start Eclipse and set XX:PermSizeto
at least 64M, either on your Eclipse command line, or your Eclipse shortcut or in the eclipse.ini adjacent
to eclipse.exe. If you are using a 64 bit machine or plan to use graphical modeling tools such as Papyrus
or Sirius, 128M is amost certainly necessary.

Eclipse OCL 5.0 131

http://wiki.eclipse.org/IRC_FAQ#How_do_I_start_Eclipse.3F

Chapter 5. Examples

5.1. Royal and Loyal Example Project

The RoyaAndLoyal example project provides a substantial example of a Complete OCL document
complementing an independent Ecore meta-model.

This is the standard example used in many OCL texts and courses. It was first produced as part of the
The Object Constraint Language Second Edition by Jos Warmer and Anneke Kleppe.

This example may be used to explore a wide variety of OCL syntaxes and their presentation in the
Complete OCL editor.

You may install the example by selecting Example... from the New menu, then selecting Royal and
Loyal Example under the OCL (Object Constraint L anguage) plugins.

Open RoyalAndL oyal.ecor e with the OCLinEcore editor to explore the Ecore metamodel. Note how
the Outline can be alphabeticized and so provide a useful overview. The outline very similar to the
conventional Sample Ecore Editor tree view.

Open RoyalAndL oyal.ocl with the CompleteOCL editor to explore the OCL. Note how the full AST
can be explored in the Outline.

5.2. Empty Example Project

The Empty example project creates an empty project with a Java class path set up to assist in the use
of OCL.

This assistance is not really necessary now that the editors are based on Xtext and now that an XMl
representation is not automatically saved in abin directory.

The OCL editors can bed used wherever Ecore editors can be used.
It is not necessary for a project to have a Java nature.

It is not necessary for a project to have an Xtext nature. If you add an Xtext nature, your OCL files will
be built automatically when other filesin the project or its dependencies change. This can significantly
clutter the Problems View if you have problems with your OCL, and may significantly increase build
times.

5.3. OCLinEcore Tutorial Example Project

The OCLinEcore Tutoria project provides the conclusion of the OCLinEcore Tutorial and the material
for the Getting Started quick introduction.

The project provides an example of OCL embedded in Ecore that is also used by the Code Generation
Tutorial and Debugger tutorial.

5.4. Complete OCL Tutorial Example Project

The Complete OCL Tutorial project provides examples for the the Complete OCL Tutorial.

The project provides examples Complete OCL documentsthat complement Ecore, UML, Xtext and XMI.

5.5. OCL Interpreter Example

5.5.1. Introduction

This example illustrates the usage of the generic OCL Parser API to parse and evaluate OCL query
expressionsand constraintswithin the SDK. It demonstrates how to author OCL expressionsand eval uate
them against elements of library model instances, or against Ecore and UML elements. For Ecore and
UML models, afurther option of parsing (not evaluating) model-level (M1 inthe OMG modeling stack)
constraintsis available.

Eclipse OCL 5.0 132

OCLinEcoreTutorial
GettingStarted
CompleteOCLTutorial

Examples

5.5.2. References

Please refer to the document Object Constraint L anguage Examples Overview for reviewing the library
meta-model used as the basis for demonstrating the capabilities in this example.

5.5.3. Description

This example plug-in isnamed or g. ecl i pse. enf. ocl . exanpl es. i nt er pret er. This plug-
in contributesthe OCL | nt er pr et er menu to the library editor’s main menu and context menu. The
menu has one item:

e Show Consol e: Openstheinteractive OCL console.

Please refer to the tutorial OCL Interpreter Tutorial for reviewing the code samples within this example.

2 Packag 22 ?g Higrarc | — O 4 My extlibrary 25 # | Employes ecore # | Employee.uml
— <.===g> =1 7 || [Resource Set

=l =F test = & platform: fresourceftest My, extlibrary
#| Emplovee.ecore =~ < Library Richmond Branch
| Employes,uml <= ‘Writer Charles Dickens
s My, exctlib <+ Mriker Pyodor Dost T
L YEX.I rary prerier Ty odor Hostaysys Mews Sibling b
el ol xmi < Book The Mystery of Edw

<+ Book David Coppetfisld <) Unda Set
< Book Nicholas Mickleby
<+ Book Bleak House
< Book The Idiot of Cut
< Book Crime and Punishme = Copy
<+ Book The Brothers Karam
< Book Dewils
3 Delete

Yalidate

Yalidation
Query
OCL Query
QCL Interpreter
Run As
Debug As
5{] Mark a5 Landmark

Lzl show Conscle

v v v v v v

The bottom field in the consol e accepts OCL expressions (comments supported). Y ou can press Enter to
evaluate on the currently selected element. Y ou can press Ctrl+Enter or Shift+Enter toinsert anewline.
The top field shows the output and errors. The console can be cleared by the Eraser button and closed
by the X button.

Because the EXTLi br ar y model is based on the Ecore metamodel, ensure that the Ecor e metamodel
isselected in the consol€e stool bar. Also ensure that the M2 modeling level isselected, asEXTLI brary
isnot ametamodel, so instances of it are not models. Thus, the OCL expressionsthat we create will target
the Ecore meta-model, as the model of the EXTLibrary model.

Content-assist is automatically activated on typing any of " . ", " ->", " ::" and" "". Also, Ct r |
+Space can be used to invoke content-assist at any time.

[21 Problems | @ Javadoc |_i=q> Declaration | & Console &2 = Properties ?I Error Log =0
Ink bive DCL - - ~
nteractive @Eoe v M2 - OBk x| = B -
Evaluating:

self.name

Results:
Fyodor Dostoyevsky

self.name.s
sizel) ; Integer
substring(lower: Integer, upper: Inkeger) @ Skring

Eclipse OCL 5.0 133

ExamplesOverview

Examples

5.5.4. Support for Ecore and UML Models

The OCL Console contributes an OCL ->Show OCL Console menu action to the Ecore and UML editors
(for *. ecore and *. um models). These actions automatically select the appropriate metamodel in
the console.

For both Ecore and UML, parsing constraints at the ML (model) level is supported. This implements a
scratch pad for developing OCL constraints in the context of:

 classifiers, for invariant constraints
* operations, for pre/post condition constraints and body expressions
« attributes, for initial-value and derivation constraints

The consoleinfersthe kind of constraint from the selected element; in the case of an operation, it assumes
a post-condition constraint as these constraints support a superset of the syntax for pre-conditions and
body expressions.

i My extlibrary #] Emploves.ecore &3 # | Emploves. uml =0 EE Cutline &3 =0
= | platform:fresource/test/Emploves ecore H v
= # employee An outling is not available,

= E Ernployestodel

+- 53 companies : Comparny
+- &3 persans : Person

B Persan

#- 5 lastMame : EString
* & firskMame ¢ EString
+- dateCfBirth | EDake
H Employee -= Person

+- §5 employments : Job
5= employers : Compary
#- = manager ! Employes
E Company

+- T name : EString

+- £ employments : Job

+- 55 employees | Employee
H b

+- B company | Campany
+- 5* employee : Employes
+- & startDate : EDate

[£1 Problems | @ Javadoc | [E. Declaration | & Consale &3 = Praperties |] Error Log =0

Interactive OCL — h=s
8 Ecore = ML~ 5] G R

endif -~

Results:
Successfully parsed.

if self.employments- =isEmpty() then
OrderedSet{ }
else
self.employments.company- =asCrderedSet()
endif

The figure above shows the parsing of a derivation constraint on an Ecore property (an
ESt ruct ur al Feat ur e).

Eclipse OCL 5.0 134

Examples

i My extlibrary #| Employes.ecore #] Employes.uml &3 =0 EE Cutline &3 =0
=] platform:fresource/test/Emploves. uml - 7 v
=2 <Model>» employes
= Q < Class > Employeetodel
=& <Propetty> companies : Company [0..%]
017 <literal Unlimited Maturals *
L0, «literal Inkeger > 0
+-[= <Property= persons @ Person [0..%]
= Q < Class> Person
E& <Property = lastMame : String
[E& <Property = firstMame : String
=l «Property > dateOfEirth ; Date
= Q <Class> Employes
/7 zzeneralization= Person
+-[= <Propetty > emplovers | Company [0..%]
+-[= <Property > manager : Emploves [0..1]
= Q < (Class > Company
[Eg «<Property = name : String
+-[= <Property > employess : Employves [0..%]
= g <hssociation Class: Job
[E& <Property= startDate : Date

an outline is not available.

= «Association = A_manager_emplovee »
[£1 Problems | @ Javadoc | [E. Declaration | & Consale &3 E Properties | 9 Error Lag =0
Interactive OCL = - =
Egume - M1 - B G 8 = " -
self.employers->notEmpty () implies let jobs : Set(Job) = self.job in Lad
Jobs->fordll(j | J.startDate <> self.date0fEirth)
Results:
Successfully parsed.
v

self. employers- =notEmpty() implies let jobs : Set(Job) = self.job in
jobs-=Forall(j | j.startDate <> self.dateCrBirth)

The figure above shows the parsing of an invariant constraint on aUML classifier (aC ass). Note that
UML can model the Job as an association class; aroughly equivalent Ecore model is more verbose.

5.5.5. Example Code

Refer to the code in this example if you need to:

» parse, validate and evaluate OCL queries and constraints on EMF model elements
 implement content-assist for OCL constraints in your model editor

Copyright © 2000, 2007 IBM Corporation and others. All Rights Reserved.

Eclipse OCL 5.0 135

http://www.eclipse.org/legal/epl-v10.html

Chapter 6. Classic Ecore/UML
Programmers Guide

The Ecore/UML Programmers Guide describes the ways in which the Ecore or UML bindings of Eclipse
OCL can be used from Java programs.

The Ecore binding has been available since Eclipse OCL 1.0.0 (Callisto). The UML binding wasadded in
1.1.0 (Europa). Both will remain for aslong as necessary. Examples quality prototypes of the new UML-
aligned Pivot binding werefirst available in 3.1.0 (Indigo). The Pivot binding will become the preferred
binding in 6.0.0 (Mars). The Pivot binding is described in a separate Pivot Programmers Guide.

The OCL Parser/Interpreter provides an implementation of the Object Constraint Language 2.4
specification for EMF-based metamodels and models. It offers OCL constraint and query parsing and
evaluation, model-based validation, and provides an infrastructure for content assist in textual editors.

The following features are supported in the current version:
» Classifier invariant constraints

» Operation precondition and postcondition constraints and body conditions
* Property constraints (initial-value and derivation)

* Attribute and operation definitions (def: expressions)
 Package context declaration

» Basic values and types

 Collection types

» Navigation of attributes and association ends

* Operation invocation

* Iteration expressions (al standard iterators)

 Let expressions

* If expressions

* Tuples

» Message expressions, including unspecified values

* Operations predefined by OCL: allnstances(), oclIsKindOf(), ocllsTypeOf(), oclAsType(),
oclIsNew()

 Escape syntax for illegal names: type, operation, attribute, etc. namesthat correspond to OCL reserved
words can be escaped in the standard fashion using aleading underscore (*_’). In addition, names that
contain spaces or tabs can be escaped by enclosing them in double-quotes (*™’; this is non-standard).
eg.,sel f.ownedRul e->forAll (c : Constraint | c._context = self)

The above constructs are supported by the parser for parsing and for evaluation, with the exception of the
ocllsNew() operation and message expressions. All of the above are supported for both Ecore and UML
models. The following are supported by default for UML (both in parsing and eval uation):

» Navigation of non-navigable association ends (including those that are owned by the association)
» Qualified association end navigation

» Navigation to association classes, including source qualifiers

» Operations predefined by OCL : ocllsInState()

The following features are provided in addition to the OCL specification:

* String case conversion operations: toUpper(), toL ower()

 Support for comparison (<, <=, etc.) and sorting of any java Conpar abl e sof conformant types
» Transitive closure of associations: closure(expr : OCLExpression) iterator

* Navigation of “hidden” opposites of references specified in Ecore models using a
Property. opposi t eRol eNane annotationwithsourceht t p: / / schena. ong. or g/ spec/

Eclipse OCL 5.0 136

http://www.omg.org/spec/OCL

Classic Ecore/UML
Programmers Guide

MOF/ 2. 0/ enmof . xrm on the forward reference, producing an Qpposi t ePr opertyCal | Exp
expression

The OCL implementation is defined in plug-ins for convenient deployment in Eclipse, but asis the case
for EMF, it can aso be used stand-alone. The plug-ins are partitioned thus:

» org. eclipse. ocl : thecoreparsing, evaluation, and content assist services. Definition of the OCL
Abstract Syntax Model and Environment API. These APIs are generic, independent of any particular
metamode! (though using Ecore/EMF as the meta-meta-model).

e org.eclipse.ocl.ecore: implementation of the Ecore metamodel environment, binding the
generic Environment and AST APIs to the Ecore language. Provides support for working with OCL
constraints and queries targeting Ecore models.

e org.eclipse.ocl.um: implementation of the UML metamodel environment, binding the
generic Environment and AST APIs to the UML language. Provides support for working with OCL
targeting UML models.

Please refer to the OCL Interpreter Tutorial for review of the code samples.

6.1. Parsing Constraints and Queries

The OCL parser provides two APIs for parsing constraint and query expressions. The OCLHel per
interface is designed primarily for parsing constraints and query expressions embedded in models, such
as Ecore or UML models. The _OCL _ class serves as the main entrypoint into the parsing API but also
implements the parsing of OCL documents, for example from text files. In both cases, the concept of
Envi ronnent iscrucial.

6.1.1. The OCL Environment

The following diagram showsthe core of the Envi r onnment AP, that clients of the OCL parser interact
with:

Eclipse OCL 5.0 137

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/helper/OCLHelper.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/OCL.html

Classic Ecore/UML
Programmers Guide

zJava Classs: «Java Interfaces
(3 ocL € EnvironmentFactory
@ nelfélnsftaﬂte I !t . @ createEnvironment ()
@ getenvironmen] @ createPackageContext ()
@ getEvaluationEnvironment () - enviranmentFactory | o |qadEnvironment ()
@ getExtentMap () @ createClassifierContext ()
@ setbExtentMap () @ createlnstanceContext ()
@ parse () _ @ createOperationContext ()
@ QET_CDHS’EFEIH’ES () @ createAttributeContext ()
@ validate () @ createEnvironment ()
@ EVHlUE_TE 0 @ createEvaluationEnvironment ()
@ islnvalid () @ createEvaluationEnvironment ()
@ check () @ createEvaluationVisitor ()
@ createOCLHelper ()
@ createQuery ()
zJava Interfaces
- rootEnvironment - evalEnv € EvaluationEnvironment
@ getvaluelf ()
zlava Interface= g ;Edplﬁie 0
€3 Environment o remove ()
@ clear()
etFacto .
getParenrtf{{}} @ overrides ()

@ callOperation ()
getContextPackage () ® navigateProperty ()
getContextClassifier () .g F o
getContextOperation () @ navigateAssociationClass ()
getContextPraperty () @ createExdentMap ()

; @ iskindQf ()
isEmpty () .

@ isTypeOf()
lookupLocal () o qefT
lookup () i getType ()

lookupPackage () createTuple ()

lookupClassifier ()

lookupOperation ()

lookupPropery ()
lookupAssociationClassReference ()
lookupState ()

lookupSignal ()

getvariables ()

getselfariable ()

PO OCOOPOTOOTOTOOPODTOETODODE

The OCL_classisageneric type; itstype parameters represent the various metacl asses of the metamodels
that OCL works with in the UML/MOF family of OMG specifications. For example, <C> representsthe
Classifier concept, <O> the Operation concept, etc. See the discussion of metamodels supported by OCL
for details of the mappings. The same type parameter names are used consistently throughout the OCL
APIsto represent the same metaclasses.

The OCL classdefinesinstances of autonomous OCL parsing and evaluation environments. It hasasingle
root Envi r onnent created by an Envi r onnent Fact ory implementation for a particular EMF-
based metamodel. The OCL environment consists, conceptually, of the model that is to be constrained
together with all of the constraints and additional operations and attributes defined (via OCL) for the
purpose of formulating constraints.

Envi ronnent s nest. Usually the root environment has no correlation to an element in the model,
or it may correspond to some Package providing a default namespace (called a package context).

Eclipse OCL 5.0 138

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/OCL.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/Environment.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/EnvironmentFactory.html

Classic Ecore/UML
Programmers Guide

Alternatively, it may contain one or more nested environments defining package namespaces. A package
context contains one or more classifier contexts, which in turn can contain operation and/or attribute
contexts. Whereas the purpose of a package context is primarily to assist in the look-up of named model
elements, the classifier, operation, and attribute contexts have deeper meaning.

A classifier context defines the type of the sel f variable in OCL constraints and queries. By itself, it
is the context for invariant constraints for the context classifier. Additionally, as the parent context for
operation and attribute constraints, it indicates the classifier in which context an operation or attribute
constraint applies; this may be the classifier that defines these features, or it may inherit them from some
more general classifier.

An Envi r onment may contain named Var i abl e stowhich OCL expressions can refer. The most
common of theseissel f . Othersinclude the parameters defined by an operation (and itsr esul t), in
the case of an operation context. The OCL API even allows clients to add variables, in code, to define
“global” names.

6.1.2. Creating an OCL Environment

The static factory methods on the OCL class are used to create instances. It is a good practice to re-use
the same OCL instance for al parsing and evaluation of constraints and queries on a model while that
model is loaded (usually in some Resour ceSet in an editor). Using the shared environment factory
for the Ecore metamodel, we can create an OCL environment suitable for parsing OCL constraints on
any Ecore model and evaluating them on instances of the model:

/ create an OCL instance for Eggre
0OCL ocl = OCL.mewInstance(EcoreEnvironmentFactory. INSTANCE);
[Text for cut and paste]

Severa of the type parameters in the OCL generic type signature are useful mostly within the OCL API.
We leave them, here, as wildcards.

6.1.3. The OCL Helper

From an OCL instance, we can create a helper object with which to parse constraints and additional
operation/attribute definitions. This _OCLHel per _ stores all of the instantiations of OCL template
metaclasses (such as Col | ecti onType(T) and Tupl eType and additional operation/attribute
definitionsin the root environment of the OCL that created it. This ensuresthat all of these constructs are
available for reuse in subsequent parsing.

Eclipse OCL 5.0 139

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/expressions/Variable.html
../references/5110-creating.txt
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/helper/OCLHelper.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/types/CollectionType.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/types/TupleType.html

Classic Ecore/UML
Programmers Guide

zJava Classs

zlSes zJava Interface=
®ocL © OCLHelper
@ newlnstance [zlUSes @ setContext ()
@ getEnvironment () @ getContextClassifier ()
@ getEvaluationEnvironment () @ setOperationContext ()
@ getExtentMap () @ getContextOperation ()
@ setExtentMap () o setAttributeContext ()
@ parse () @ getContextAttribute ()
@ getConstraints () @ setinstanceContext ()
@ validate () @ setinstanceOperationContext ()
@ evaluate () @ setinstanceAtributeContext ()
@ islnvalid () @ getOCL ()
@ check() @ isValidating ()
@ createOCLHelper () @ setvalidating ()
@ createQuery () @ createQuery ()
@ createConstraint ()
@ createlnvariant ()
A NSV @ createPrecondition ()
O ConstraintKind @ createPostcondition ()
F IVARIANT =USex @ createBodyCondition ()
% PRECONDITION @ createlnitialValueExpression ()
% POSTCONDITION @ createDerivedvalueExpression ()
% BODYCONDITION @ defineQperation ()
5 INITIAL @ defineAttribute ()
% DERIVATION @ getSyntaxHelp ()
¥ DEFINITION

The OCLHel per is primarily designed for parsing constraints and query expressions embedded in
models, providing the following API for that purpose:

» createQuery(): parsesaquery expression

e createConstraint(): parsesaconstraint of agiven Const r ai nt Ki nd

e createl nvari ant () : convenience for invariant constraints

e createPrecondition(): conveniencefor pre-condition constraints

» creat ePost condi ti on() : convenience for post-condition constraints

» creat eBodyCondi ti on() : convenience for body conditions

e createlnitial Val ueExpressi on() : convenience for attributeinitial values
e createDerivedVal ueExpressi on() : convenience for attribute derived values
» defi neQperati on() : convenience for additional operation definitions

» defineAttribute(): conveniencefor additional attribute definitions

Different kinds of constraints require different context environments. The set Cont ext (),
set Qperati onContext (), and set Attri but eCont ext () methods create the appropriate
nested Envi ronment @ i n the host @DCL instance' s root environment.

The result of parsing a query expression isan _OCLExpr essi on , an instance of the Abstract Syntax
Model . The result of parsing a constraint is an instance of the Const r ai nt metaclass defined by the

OCL's target metamode! .

Eclipse OCL 5.0 140

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/expressions/OCLExpression.html

Classic Ecore/UML
Programmers Guide

/ create an OCL helper object
OCLHelper<EClassifier, EOperaticon, EStructuralFeature, Constraint> helper =
ocl.create0OCLHelper();

/ set the OCL context classifier
helper.setContext (EXTLibraryPackage.Literals.LIBRARY);

Constraint invariant = helper.createInvariant(
"books->forall(bl, b2 | bl <> b2 implies bl.title <> b2.title)");

OCLExpression<EClassifier> query = helper.createQuery(
"books->collect(b : Boock | b.category)-rasSet{)");

[Text for cut and paste]

Ecore does not defineaConst r ai nt metaclass, so the OCL binding for Ecore supplies one.

6.1.4. Operation and Attribute Contexts

In the case of constraints on operations or attributes, the context consists of two elements:
the constrained operation/attribute and a classifier in the context of which the constraint is to
apply. This accounts for the possibility that a classifier defines constraints on inherited features.
As an example, consider the EModel El enent : : get EAnnot ati on(ESt ri ng) operation and
ERef er ence: : eRef erenceType property in the Ecore metamodel. These can be constrained as
follows:

EOperation oper = null;
for (EOperation next : EcorePackage.literals.EMODEL_ELEMENT.getEOperations()) {
if ("getEAnnctation”.equals(next.getName())) {
oper = next;
break;

¥

// define a post-condition specifying the wvalue of EModelElement::getEAnnctation(EString)
'/ This operation environment includes variables representing the operation
// parameters (in this case, only "source : String") and the operation result
helper.setOperationContext(EcorePackage.lLiterals.ECLASS, oper);
Constraint body = helper.createPostcondition(

"result = self.efnnotaticns->any(ann | ann.scurce = source)");

// define a derivation constraint for the EReference::eReferenceType property
helper.setAttributeContext(
EcorePackage.Literals.EREFERENCE,
EcorePackage.literals. EREFERENCE__EREFERENCE_TYPE);
Constraint derive = helper.createDerivedValueExpression(
"self.eType-rany(true).oclAsType(EClass)");

[Text for cut and paste]

6.2. Evaluating Constraints and Queries

In Parsing Constraints, we saw how to use the OCLHel per API for parsing OCL constraints and query
expressions. Parsing constraintsis very interesting in itself, but we can also make OCL come alivein our
applications by evaluating these constraints. For this, OCL providesaQuery API.

6.2.1. The OCL Query

Like the OCLHel per for parsing constraints, the OCL facade object provides _Query objects for
evaluating constraints and query expressions.

Eclipse OCL 5.0 141

../references/5110-context.txt
../references/5110-define.txt
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/Query.html

Classic Ecore/UML
Programmers Guide

zava Classs zJava Interfaces
®ocL £USEs € Query
& newlnstance i @ getEvaluationEnvironment ()
@ getEnvironment () @ evaluate ()
@ getEvaluationEnvironment () @ check()
@ getExentMap () @ select()
@ setExdentMap () @ reject()
@ parse() @ resultType ()
@ getConstraints () @ getExtentMap ()
@ validate ()
@ evaluate ()
@ islnvalid () =USEs
@ check()
-:EJ createOCLHelper () =Java Interfaces
© createQuery () €3 EvaluationEnvironment
@ getvaluelf()
@ replace ()
@ add ()
@ remove ()
@ clear()

The Quer y encapsulates an _Eval uat i onEnvi r onnent providing the run-time values of context
variables to the OCL interpreter. These context variables are set and retrieved using the following
methods:

e add(String, Object):addsaname-valuebinding for avariable
* replace(String, Object):replacesan existing variable binding
» renove() : removesavariable binding

e get Val ueOr (Stri ng) : obtains avariable value

The context variables of primary interest are sel f and, in operation congtraints, the variables
corresponding to its parameters. The Eval uat i onEnvi r onnent APl is aso used to supply values
for “global” variables added to the parsing Envi r onnment by the client.

Another important consideration in the evaluation environment isthe al | | nst ances() operation,
which obtains the entire extent of a classifier. For data types, this is a simple problem: the extent
of an Enuner ati on is well defined and the extents of other kinds of Dat aType s are undefined.
For Cl ass extents, the Eval uat i onEnvi r onnent provides support for an extent map, mapping
classes to the sets of their instances, as determined by the client. A client sets the extent map using the
OCL. set Ext ent Map() method. The default extent map, if none is provided by the client, lazily
computesthe extent of aclassfromthe EMF Resour ce containing the context element of theeval uation.
An dternative extent map can befoundin or g. ecl i pse. ocl . ecor e. opposi t es. Ext ent Map

So, after optionally setting values of context variables (other than sel f ; the Quer y takes care of this)
and an extent map, simply construct aquery and use it to eval uate the expression or check the constraint:

Eclipse OCL 5.0 142

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/EvaluationEnvironment.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/OCL.html#setExtentMap(java.util.Map)
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/ecore/opposites/ExtentMap.html

Classic Ecore/UML
Programmers Guide

0OCL ocl = OCL.mewInstance(EcoreEnvironmentFactory.INSTANCE);
OCLHelper<EClassifier, ?, ?, Constraint> helper = ocl.createOCLHelper(};

helper.setContext(EXTLibraryPackage.Literals. LIBRARY);
Constraint invariant = helper.createInvariant(
"books->forall{bl, b2 | bl <> b2 implies bl.title <> b2.title)");
OCLExpression<EClassifier> query = helper.createQuery(
"books->collect(b : Book | b.category)-rasSet()");

'/ create a Query to ewvaluate our query expression
Query queryEval = ocl.createQuery(query);

'/ create another to check our constraint
Query constraintEval = ocl.createQuery(invariant);

List<Library> libraries = getLibraries(); // hypothetical source of libraries

'/ only print the set of book categories for walid libraries
for (Library next : libraries) {
if (constraintEval.check(next)) {
'/ the OCL result type of our query expression is Set(BookCategory)
@suppressWarnings("unchecked™)
Set<BookCategory> categories = (Set<BookCategory>) gqueryEwval.evaluate(next);

system.out.printf("%s: ¥skn", next.getName(), categories);

b
}

[Text for cut and paste]

One of the advantages of the Quer y API is that a query’s evaluation environment can be reused for
multiple evaluations, as above. The extent of any classifier is only computed once. For convenience,
however, in situations where only a single evaluation is required, the OCL class provides shortcuts:

'/ check a single library

Library 1ib = getlLibrary()}; // hypothetical source of a library

/ check whether it satisfies the constraint
System.out.printf("¥s valid: %b", lib.getName(), occl.check(lib, inwvariant}};

[Text for cut and paste]

The Quer y API aso provides methods that work on multiple elements. The first example, above, could
be written more succinctly as:
// only print the set of book categories for valid libraries
for (Library next : constraintEval.select(libraries}) {
@suppresskarnings ("unchecked")
Set<BookCategory> categories = (Set<BookCategory>) queryEval.evaluate(next);

System.out.printf("¥s: Xs¥n", next.getMame(), categories);
}
[Text for cut and paste]

6.3. Parsing OCL Documents

As we saw in the Parsing Constraints and Queries topic, the OCL parser provides an _OCLHel per
API for parsing constraints embedded in models. OCL also permits constraints to be specified in a text
document, as an adjunct to the model. In this case, the concrete syntax for context declarations indicates
the context of constraints, equivalent to their placement in models.

As an example, consider the following Complete OCL document: "

Eclipse OCL 5.0 143

../references/5115-check-all.txt
../references/5115-check-one.txt
../references/5115-check-quick.txt
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/helper/OCLHelper.html

Classic Ecore/UML
Programmers Guide

import ‘platform:/resource/org.eclipse.emf.examples. Library/model /extlibrary. ecore’
package extlibrary

context Library
-- get all books with a title in a library and its branches (recursively)
def: getBooks(title : String) : Set(Book) =
books-rselect{b | b.title = title)->asSet()->union(
branches.getBooks(title)-rasset())

context Book
-- the library containing a book
def: library : Library = Library.allInstances()->any(books->includes(self))

-- book titles are unique within their library branch (and its sub-branches)
inv unique_title: not library.eoclIsUndefined() implies
Library.getBooks(title) = Set{self}

endpackage
[Text for cut and paste]

The import on the first line is an extension supported by the Complete OCL editor
for use with the Pivot meta-model. The import is ignored by the parsers for the Ecore
or UML bindings, which assume that the relevant metamodels have been registered
in either the global EPackage.Registry or the local EPackage.Registry passed to the
EnvironmentFactory..

6.3.1. The OCL Input
The _OCLI nput _ class encapsulates an OCL document. An input can be created from a string or an

input stream.
eJava Classz Java Class
alUSEs = ®
(& ocL (3 oCLInput
& ne:nélns_tance ﬂt” g OCLInput{String)
@ getEnvironmen QCLInput{inputStream)
@ getevaluationEnvironment () & OCLinput{inputStream, String)
@ getExtentMap () & oCLUInputiReadern)
@ setExtentMap () @ getContent])
@ parse () _ @ getContentAsStringl)
@ getConstraints () @ getContentAsStream()
@ validate ()
@ evaluate ()
@ islnvalid ()
@ check()
@ createOCLHelpar ()
@ createuery ()

Given an OCLI nput , simply ask an OCL to parseit: "

Eclipse OCL 5.0 144

../references/5120-extlibrary.ocl
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/OCLInput.html

Classic Ecore/UML
Programmers Guide

6.3.2.

EPackage.Registry registry = new EPackageRegistryImpl();
registry.put(EXTLibraryPackage.eNS URT, EXTLibraryPackage.eINSTANCE);
EcoreEnvironmentFactory environmentFactory = new EcoreEnvironmentFactory(registry);
0CL ocl = OCL.newInstance(envirenmentFactory);

'/ get an OCL text file via some hypothetical API
InputStream in = getInputStream("/model/parsingDocumentsExample.ocl™);

Map<5tring, Constraint> constraintMap = new HashMap<5tring, Constraint>();
// parse the contents as an OCL document
try {

OCLInput document = new OCLInput(in);

List<Constraint:> constraints = ocl.parse(document};

for (Constraint next : constraints) {

constraintMap. put{next.getName(), next);

OCLExpression<EClassifier> body = next.getSpecification().getBodyExpression(};
System.out.printf("¥s: ¥s¥n", next.getName(), body);

h
} finally {
in.close();
}

[Text for cut and paste]

Accessing the Constraints

The OCL returns the list of constraints if they were successfully parsed. They are retained by the
OCL (available viathe get Const rai nt s() method at any time), and in particular, any definitions
of additional operations or attributes are available for subsequent constraint parsing. Any number of
OCL documents may be parsed by the same OCL instance, combined also with constraints parsed by
OCLHel per s. All of these constraints are retained by the OCL environment.

Library library = getLibrary(); // get library from a hypothetical source
OCLHelper<EClassifier, ?, ?, Constraint> helper = ocl.createOCLHelper(};
// use the constraints defined in the OCL document

'/ use the getBooks() additional operation to find a book

helper.setContext(EXTLibraryPackage.Literals. LIBRARY);

OCLExpressicn<EClassifier> query = helper.createQuery(
"getBooks('Bleak House')-:asSequence()->first(}");

Boock book = (Book) ocl.evaluate(library, query);
System.out.printf("Got book: ¥s¥n", book);

'/ use the unique_title constraint to validate the book
System.out.printf({"validate book: Ebi¥n",

ocl.check{book, constraintMap.get("unique_title™)});
[Text for cut and paste]

The source for these examples may be found in the org.eclipse.ocl.ecoretests plugin in model/
parsingDocumentsExample.ocl and in src/org/eclipse/ocl/ecoreftests/DocumentationExampl es.java.

6.4. OCL Relationship to Metamodels

The OCL implementation provides support for models defined using either the Ecore or the UML
metamodel (as implemented by the Eclipse EMF and UML2 projects), and an extensibility APl that
allows additional EM F-based metamodels to be plugged in.

The direct and indirect coupling of the Ecore and UML2 meta-models to Ecore makes
exact compliance with the OMG specification very difficult, particularly in the area
of reflection. Eclipse OCL is therefore migrating to a new potentially 100% OMG
compliant Pivot metamodel that hides the differencess between OMG’s UML and

Eclipse OCL 5.0 145

../references/5120-parsing.txt
../references/5120-accessing.txt

Classic Ecore/UML
Programmers Guide

EMOF and Eclipse’'s UML and Ecore. The Pivot binding is described in the Pivot
Programmers Guide.

The OCL APl implements support for different target metamodels viathe Envi r onnent Fact ory
interface. An implementation of this interface binds the metamodel’ s metaclasses to the generic type
parameters of the OCL_ class. The metamodel-specific Envi r onnment _implementation constructed by
this factory implements the reflection capability required by OCL to discover the elements of the model
being constrained and the rel ationships between them.

6.4.1. The Ecore Metamodel Binding

An OCL binding for the Ecore metamodel is provided by theor g. ecl i pse. ocl . ecor e plug-in. It
is best suited to parsing and evaluating OCL constraints on Ecore models. Evaluation of constraintsis
supported on instances of the EMF-generated Java API (Ecore as the source for the genmodel) and on
dynamic EObjects.

As isillustrated by most of the examples in this documentation, the Ecore binding is provided by the
Ecor eEnvi r onnent Fact ory class. By default, the Ecore environment uses the static EPackage
registry to look up package names. It can also be supplied with an alternative package registry (for
example, onelocal toaResour ceSet) but it will ways use the static registry as abackup. Aside from
the package registry, the Ecore environment factory maintains no state. So, when the shared registry is
to be used, the static Ecor eEnvi r onnment Fact or y. | NSTANCE is most practical.

The Ecorebinding for OCL providesthe following capabilities, reflecting the subset of Ecore’smodeling
constructs with respect to UML.:

Capability Parse Evauate
Classifier invariant constraints Y Y
Operation precondition and Y N

postcondition constraints and
body conditions

Property constraints (initial-value Y Y*
and derivation)

Attribute and operation Y Y
definitions (def: expressions)

Package context declaration Y n/a
Basic values and types, mapped Y Y

from the standard EDataTypes to
OCL'’s primitive types

Collection types Y Y
Navigation of attributes and Y Y
references

Operation invocation Y Y
Iteration expressions (all standard Y Y
iterators)

Let expressions Y Y
If expressions Y Y
Tuples Y Y
Message expressions, including Y N
unspecified values

Operations predefined by OCL: Y Y
allnstances()

Operations predefined by OCL: Y Y
ocllsKindOf(), ocllsTypeOf(),

oclAsType()

Eclipse OCL 5.0 146

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/EnvironmentFactory.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/OCL.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/Environment.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/ecore/EcoreEnvironmentFactory.html

Classic Ecore/UML
Programmers Guide

Operations predefined by OCL: Y N
ocllsNew()
@pre expressions Y N

* derivation only

Ecore metamodel capability matrix

Because Ecore does not define analogues of some of the UML metaclasses required by the OCL
Abstract Syntax Model, the Ecore binding defines these on its behalf, in the pl at f orm / pl ugi n/
org. ecli pse. ocl . ecore/ nodel / OCLEcor e. ecor e metamodel. These include:

» Constrai nt : themodel of an OCL constraint (when thel anguage isOCL)
e Cal | OperationActi on: usedinthe model of message expressions
e SendSi gnal Acti on: used in the model of message expressions

» Expressi onl nOCL: it isthis metaclass s general class OpaqueExpr essi on that Ecore does not
define. It is elided in the Ecore binding

» St at e: Ecore provides no behavior modeling capabilities. The Ecore binding simply substitutes
Ehj ect

For applications that work exclusively with the Ecore binding for OCL, the
org. ecl i pse. ocl . ecor e package definesasubclass of the OCL classthat suppliesall of the generic
type parameter bindings to simplify typing (in the absence of type dliasing in Java). It also provides
Ecore-specific convenience factory methodsfor the OCL, itself, and narrowsthe return type of the factory
methods for the OCLHel per and Query interfaces. These specialized interfaces likewise supply the
generic type parameter bindings for Ecore.

6.4.2. The UML Metamodel Binding

An OCL binding for the UML metamodel is provided by the or g. ecl i pse. ocl . um plug-in. It
is best suited to parsing and evaluating OCL constraints on UML models. Evaluation of constraints
is supported on instances of the UML2-generated Java APl (UML as the source for the genmode!),
on dynamic EObjects (using an Ecore model created by the UML-to-Ecore converter), and on
I nst anceSpeci fi cati on elementsinthe UML model.

The UML binding is provided by the "UMLEnvi r onnent Fact ory_class. By default, the UML
environment factory and all of the environment contexts that it creates use a private Resour ceSet to
look up the corresponding UML model(s) against which OCL constraints are parsed.

« Itistheclient’sresponsihility to ensure that the UML model isloaded in the resource set used by the
UML environment factory instance.

The UML environment factory can aternatively beinitialized with aresource set of the client’ s choosing.
Ordinarily, the UML environment uses its resource set’s local EPackage registry to look up EMF-
generated EPackage names corresponding to UML models. A custom package registry may be provided
by the client if necessary.

The UML binding for OCL provides the following capabilities:

Capability Parse Evaluate
Classifier invariant constraints Y Y
Operation precondition and Y N

postcondition constraints and
body conditions

Property constraints (initial-value Y Y*
and derivation)

Attribute and operation Y Y
definitions (def: expressions)

Package context declaration Y n/a
Basic values and types Y Y+

Eclipse OCL 5.0 147

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/uml/UMLEnvironmentFactory.html

Classic Ecore/UML
Programmers Guide

Collection types Y Y
Operation invocation Y Y-
Navigation of attributes and Y Y
references

Navigation of non-navigable Y Y

association ends (including those
that are owned by the association)

Qualified association end Y Y=
navigation
Navigation to association classes, Y Y=

including source qualifiers

Iteration expressions (all standard Y Y
iterators)

Let expressions Y Y
If expressions Y Y
Tuples Y Y
Message expressions, including Y N
unspecified values

Operations predefined by OCL: Y Y
alllnstances()

Operations predefined by OCL: Y Y
ocllsKindOf(), ocllsTypeOf(),

oclAsType()

Operations predefined by OCL: Y N
ocllsinState()

Operations predefined by OCL: Y N
ocllsNew()

@pre expressions Y N

* derivation only

+ OCL definesthe Real primitive
type that is missing from UML,
but not a Literal Real

- with InstanceSpecifications,
only where body constraints are
defined

= only with
I nstanceSpecifications

UML metamodel capability matrix

A special case of the UML environment’ s support for dynamic EObjects, mentioned above, is stereotype
applications. The Eclipse UML2 component uses dynamic EMF in the implementation of stereotype
applications, by converting UML Pr of i | e sto EPackage s. Constraints parsed in the context of a
UML St er eot ype can beevaluated on applications (instances) of that stereotype or on model el ements
to which the stereotype is applied. This applies only to UML models, themselves, as instances of the
UML metamodel (stereotyping isonly available in the UML metamodel).

For applications that work exclusively with the UML binding for OCL, theor g. ecl i pse. ocl . un
package defines a subclass of the OCL class that supplies all of the generic type parameter bindings to
simplify typing (in the absence of type aliasing in Java). It also provides UML-specific convenience
factory methods for the OCL, itself, and narrows the return type of the factory methods for the
OCLHel per and Query interfaces. These specialized interfaces likewise supply the generic type
parameter bindings for UML. h2. Content Assist Support

Eclipse OCL 5.0 148

Classic Ecore/UML
Programmers Guide

The Content Assist facilities described here are used by the Interactive OCL Console.
They are not used by the new Xtext-based Editors or the Interactive Xtext OCL
Console.

The __OClLHel per APl provides support for content-assist in rich editors, by parsing
partidl OCL expressions and supplying completion suggestions. The Li st <Choi ce>
get Synt axHel p(Constrai nt Ki nd, String) operationreturnsalist of suggestionsfor the next
token to follow the end of the expression fragment.

zJava Interfaces sUSEs zlava Interfaces

€3 OCLHelper €3 Choice
setContext () @ getkind ()
getContextClassifier () @ getMame ()
setOperationContext () @ getDescription ()
getContextOperation () @ getElement ()
setattribute Context ()

getContextAttribiute ()
setinstanceContext ()
setinstanceOperationContext ()
setinstanceAttribute Context ()
getsyntaxHelp ()

zUSE=

2O OCOTOOOD

zJava Enums
2 ChoiceKind

Y ASSOCIATION_CLASS

¥ ENUMERATION_LITERAL
¥ OPERATION

¥ PACKAGE

¥ PROPERTY

¥ sIGNAL

W STATE

¥ TYPE

¥ VARIABLE

The Choi ce_objectsreturned by the hel per include some convenient text strings (name and description)
to formulate basic JFace content-assist proposals. Each choice also carries areference to the element that
it represents, the kind of element indicated by the Choi ceKi nd enumeration, for a more sophisticated
content assist that might inlude context information, documentation, etc. as in Eclipse JDT. The list of
choices depends in part on the kind of constraint expression that isto be completed, as for example, the
ocl | sNew() operation isonly permitted in operation post-conditions.

Eclipse OCL 5.0 149

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/helper/OCLHelper.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/helper/Choice.html

Classic Ecore/UML
Programmers Guide

hel per. set Cont ext (EXTLi br ar yPackage. Li t er al s. BOXK) ;

Li st <Choi ce> choi ces = hel per. get Synt axHel p(Const rai nt Ki nd. | NVARI ANT,
"Book. al | I nst ances() - >col | ect (aut hor)->");

for (Choice next : choices) {

switch (next.getKind()) {

case OPERATI ON:

case S| GNAL:
/1 the description is already conplete
System out. printl n(next.getDescription());

case PROPERTY:

case ENUMERATI ON_LI TERAL:

case VARl ABLE:
System out. println(next.getName() + " : " + next.getDescription();
br eak;

defaul t:
System out. printl n(next.get Name());
br eak;

6.4.3. Syntax Completion Choices

The computation of Choi ce sis supported for the following tokens, which may be used by a client as
auto-assist triggers:

Token Completion choices

Features applicable to the type of the expression
to the left of the dot, or its element type if it
is a collection. association classes (in the UML
environment only)

-> Collection operations and iterators

Packages, types, enumeration literals, and states (in
the UML environment only)

A Operations and signals (in the UML environment
only)

In other situations, the choices the current context
variables and implicit references to features of
the sel f variable. For example, if the input is
something like"" or "sel f.isOrdered and

Content-assist triggers

Thecompletion of partially specified identifiersisalso supported, by backtracking tolook for one of these
triggering tokens. This supports interactively narrowing the choices while the content-assist window is
active.

choi ces = hel per. get Synt axHel p(Const rai nt Ki nd. POSTCONDI Tl ON,
"sel f.author.oclls");

6.5. OCL Abstract Syntax Model

The OCL Abstract Syntax Model is defined by the OCL L anguage 2.4 specification . Wewill not attempt
to describe this model, here. However, the Eclipse implementation of OCL defines some extensions to
this model that provide additional services. The most important of these is support for the Visitor design
pattern.

Eclipse OCL 5.0 150

http://www.omg.org/spec/OCL

Classic Ecore/UML
Programmers Guide

zJava Interfaces

© Visitable zlses «.Jag\l;teilt'face»
sitor
@ accept()
«zJava Interfaces «zJava Interfaces «zJava Classs
3 OCLExpression € variable © AbstractVisitor
< result: T

& mbstractvisitor ()

< Pbstractvisitor ()

@. visitOperationCallExp ()

& handleOperationCallExp ()

@. visitvariableExp ()

@. visitProperyCallExp ()

& handleProperyCallExp ()

@. visithssociationClassCallExp ()
< handleAssociationClassCallExp ()
@ visitvariable ()

& handlevariable ()

6.5.1. The Visitable and Visitor Interfaces

All of the metaclassesin the Abstract Syntax Model (nodesinthe AST) that can be visited implement the
Vi si t abl e_interface. It defineasingle operationaccept (Vi si t or) . Thismethod delegatesto the
appropriatevi si t Xyz(Xyz) method of the Vi si t or _. Thedirectimplementorsof theVi si t abl e
interface are the OCLEXxpr essi on and those metaclasses of the Expr essi ons package that do not
conform to OCLExpr essi on:

* Variabl e

* Col l ectionLiteral Part
e TupleLiteral Part

* Expressi onl nOCL

Thislast is not defined in the Expr essi ons package because it pertains to the placement of OCL in
Const rai nt elementsin models.

The OCL parser, internadly, defines a few implementations of visitors, including a
Val i dationVisitor for validating OCL expressions and an _Eval uati onVi sitor_ for
evaluating OCL expressions.

6.5.2. Implementing a Visitor

The best way to implement avisitor isto extend the Abst ract Vi si t or class. It providesar esul t
variable of the generic type parameter type T to store the result computed by the visitor (optional) and
a convenient pattern of selective method overrides to process only those nodes of interest for the task
at hand.

The Abstract Vi si t or providesimplementations of all of thevi si t Xyz() interface methods that
simply return the current r esul t value. Furthermore, for any internal nodes of the syntax tree (such
as OperationCal | Exp and | f Exp), thevi si t Xyz() methods recursively visit the child nodes,
feeding the results of those descents into a handl eXyz() method that the subclass can override to
compute some result from the child results.

Thus, asubclassneedsonly to selectively overridethedefault implementationsof vi si t Xyz() methods
for leaf tree nodes and handl eXyz() methods for non-leaves. For example, to find all variables that
are declared but never used:

Eclipse OCL 5.0 151

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/utilities/Visitable.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/utilities/Visitor.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/EvaluationVisitor.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/utilities/AbstractVisitor.html

Classic Ecore/UML
Programmers Guide

OCLExpr essi on<Cl assi fi er> expr = getExpression(); // hypothetical source of an expression

Set <Vari abl e<C assi fier, Paranmeter>> variabl es = expr. accept (
new Abstract Vi sitor<Set <Vari abl e<Cl assi fi er, Paraneter>>,
Classifier, Operation, Property, EnunerationLiteral,
Paraneter, State, Call OperationAction, SendSignal Action, Constraint>(
new HashSet <Vari abl e<Cl assifier, Parameter>>()) { // initialize the result

@verride

protected Set<Vari abl e<Cl assifier, Paraneter>> handl eVari abl e(
Vari abl e<C assi fier, Paraneter> vari abl e,
Set <Var i abl e<Cl assifier, Paraneter>> initResult) ({

resul t.add(vari abl e);

return result;

}

@verride
public Set<Vari abl e<C assifier, Paraneter>> visitVariabl eExp(
Vari abl eExp<C assifier, Parameter> v) {

resul t.renmove(v. get ReferredVari abl e());

return result;

}
1)

Set <String> var Names = new HashSet <String>();
for (Variable<?, ?> next : variables) {

var Nanes. add(next . get Nane()) ;
}

System out. println("Unused variables: + " varNanes);

6.5.3. The OppositePropertyCallExp Extension

In Ecore models, a reference may have defined an opposi t e reference, usually owned by the class
that is the type of the forward reference. An opposite reference has several, often undesirable or even
prohibitive, implications on the class owning it:

» A getter and, for settable features with upper multiplicity 1, a setter will be added, requiring the class
to know the class owning the forward reference. Thiswould create cyclic component referencesif the
two classes lived in different components and would therefore not be possible.

e The default serialization format and usually the storage format for non-default model stores changes
to include the opposite reference.

Yet, particularly for expressing constraints over the instance models it is often instrumental to be able
to navigate such forward references also in reverse. The Opposi t ePr opert yCal | Exp class which
inherits from Navi gat i onCal | Exp and is sibling of Pr opert yCal | Exp alows for this reverse
navigation in OCL. It points to the forward reference, and its semantics are to navigate this reference
inreverse.

To alow for convenient creation of such expressions in the OCL concrete syntax, the standard
property call syntax, such as sel f.x can be used, where x is not the name of a forward
reference on sel f's class but rather an annotated name on a reference using sel f's class or any
of its base classes as its type. To enable this feature, use the specia environment factory class
Ecor eEnvi ronment Fact or yW t hH ddenQpposi t es when initializing the OCL environment,
e.g., by passing such an object to the OCL. newl nst ance(. . .) method.

The name for the reverse navigation can be gspecified by an EAnnot ati on
with source http://schema. ong. or g/ spec/ MOF/ 2. 0/ enof . xml and with details key
Property. opposi t eRol eNane. The details value contains the name by which the “hidden”
opposite can be referred to in OCL expressions.

Eclipse OCL 5.0 152

http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/EAnnotation.html

Classic Ecore/UML
Programmers Guide

If OCL delegates are to be used, the standard EPackage annotations with i nvocat i onDel egat e,
settingDel egat e andval i dati onDel egat e detailsfortheht t p: / / www. ecl i pse. or g/
enf / 2002/ Ecor e source must be augmented as shown by a further hi ddenCpposi t es detail for
thehtt p: // www. ecl i pse. org/ enf/ 2002/ Ecor e/ OCL source.

- 8 OclHiddenOpposites Test
El"-ﬂtn Ecore
----- & invocationDelegates -= hitp:/fwww eclipse ong/emf 2002/ Ecore/OCL
----- 4l settingDelegates -» hitp:/fwww eclipse org/emf /2002 Ecore,/OCL
i [validationDelegates - http://www eclipse org/emf/2002/Ecore/OCL
[=-fi= OCL
L = hiddenOpposites -= true

This additional annotation causes the Envi r onnent Fact ory functionality for the EPackage
to be provided by an instance of the Ecor eEnvi r onnent Fact or yW t hHi ddenOpposi tes
class which uses the Def aul t Opposit eEndFi nder class will be used for finding and
navigating the hidden opposites. More substantial customisation is possible by specifying
an environment FactoryCd ass detail with the fully qualified name of a derived
Ecor eEnvi ronnment Fact ory that provides a constructor taking an EPackage. Regi stry
argument. Note, that the class specified must be visible by your Ecore model’ s bundle.

6.6. Customizing the Environment

An application that integrates OCL may find it advantageous to provide its users with an enhanced
OCL environment, to simplify their task of formulating OCL constraints and queries. For example,
an application might define additiona “primitive” operations on the OCL standard data types that are
pertinent to its domain, or “global” variables that inject useful objects into the user’s context. It is also
possible to customize the way “hidden” opposites are looked up and navigated, specifically to allow
reverse navigation across Ecore references that have no opposite defined.

6.6.1. Defining Global Variables

Consider an application that allows end-users to specify conditions, using OCL, to filter the objects that
are shown in the user interface. Given a sufficiently rich model (expressed in Ecore or UML) of the
objects that the Ul presents, many conditions can be expressed entirely in terms of this model. However,
some queries might depend on state of the application, itself, not the data: which perspective is active,
whether some view is showing, or even the time of day. These are not characteristics of the objects that
the user wishes to filter.

Such an application might, then, choose to define application-specific variables that afilter condition can
query: app$per specti ve, app$vi ews, app$t i me. Or, perhaps asingle variable app$, that has
properties that a condition can access:

- filter out OCL files in the Wb Devel opnent perspective
sel f.extension = 'ocl' and app$. perspective = ' Wb Devel opnent'

To do this, we define a small Ecore model of our application context, e.g.:

app

=~ AppContext
0 perspective @ EString
S views ; EString
= time : EDate

Then, in the code that parses a user’ sfilter condition:

Eclipse OCL 5.0 153

Classic Ecore/UML
Programmers Guide

OCL<?, EC assifier, ?, ?, ?, ?, ?, ?, ?, Constraint, EC ass, EQbject> ocl;
ocl = OCL. newl nstance(Ecor eEnvi ronnent Fact ory. | NSTANCE) ;

OCLHel per<EC assifier, ?, ?, Constraint> hel per = ocl.creat eOCLHel per();
hel per. set Cont ext (MyPackage. Literal s. FI LE);

/| create a variable declaring our global application context object
Vari abl e<Ed assi fi er, EParaneter> appContextVar =
Expr essi onsFact ory. el NSTANCE. cr eat eVari abl e() ;
appCont ext Var . set Name("app$") ;
appCont ext Var . set Type(AppPackage. Li t er al s. APP_CONTEXT) ;

/! add it to the global OCL environnment
ocl . get Envi ronnent () . addEl enent (appCont ext Var . get Nanme(), appCont ext Var, true);

Li st <Constrai nt> conditions = new ArraylLi st <Constraint>();

/| parse the user's filter conditions
for (String cond : getFilterConditions()) {

condi ti ons. add(hel per. createl nvari ant (cond));
}

/1 apply the filters
appl yFil ters(conditions);

The body of our hypothetical appl yFi | t er s() method must bind this context variable to avalue. In
this case, the value can be computed when we apply the filters:

AppCont ext appCont ext = AppFact ory. el NSTANCE. cr eat eAppCont ext () ;

/'l hypothetical workbench utilities

appCont ext . set Per specti ve(Wor kbenchUti | . get Current Perspective());
appCont ext . get Vi ews() . addAl | (Wor kbenchUti | . get OpenVi ewl Ds()) ;
appCont ext . set Ti ne(new Date());

Li st <Query<EC assifier, EC ass, Ebject>> queries =
new ArraylListlt; Query<kECd assifier, EC ass, ECbject>>(constraints.size());

for (Constraint next : constraints) {
Query<EC assi fier, EC ass, EOhject> query = ocl.createQuery(next);

/1 bind the variable val ue
query. get Eval uati onEnvi ronnment (). add(" app$", appContext());

queri es. add(query);

}

filter(queries); [/ applies these filters to the current objects
/1 by evaluating the OCLS on them

6.6.2. Defining Helper Operations in Java

OCL dlows the definition of additional operations and attributes using def : expressions. Thisis very
convenient for the formulation of constraints, but what if the operation that we need is something like
aregex pattern match?

cl ass Person
inv valid_ssn: self.ssn.regexMatch('\d{3}-\d{3}-\d{3}') <> null

Wemight try to definethisusing OCL, asan additional operation onthe OCL Standard Library’sSt ri ng
primitive type:
class String

def: regexMatch(pattern : String) : String =
-- 2?7

Eclipse OCL 5.0 154

Classic Ecore/UML
Programmers Guide

The operations available in the OCL Standard Library simply are not sufficient to express the value of
this operation, which should return the substring matching aregex pattern or nul | if the pattern does not
match. We need to implement thisoperation in Java. We can do that by creating acustom Envi r onment
that knows how to look up this operation, and an Eval uat i onEnvi r onnment that knows how it is
implemented.

First, let’ s start by defining a specialization of the Ecor eEnvi r onnment _. The constructor that is used
to initialize the root environment of an OCL instance will add our r egexMat ch additional operation
to the St ri ng primitive type. The constructor that is used to create nested environments copies the
operation from its parent.

cl ass MyEnvironment extends EcoreEnvironnent {
EQper ati on regexMat ch;

/! this constructor is used to initialize the root environnent
M/Envi ronnment (EPackage. Regi stry registry) {
super (registry);

def i neCust onOper ati ons() ;
}

/1 this constructor is used to initialize child environnents
MyEnvi ronment (MyEnvi ronment parent) {
super (parent);

/1 get the parent's custom operations
regexMat ch = parent.regexMat ch;
}

/1 override this to provide visibility of the inherited protected nethod
@verride
protected void setFactory(
Envi r onnent Fact or y<EPackage, EC assifier, EOperation,
EStructural Feature, EEnuniiteral, EParaneter, Ebject,
Cal | Oper ati onAction, SendSi gnal Action, Constraint, EC ass, EObject>
factory) {
super . set Factory(factory);
}

/1 use the AbstractEnvironment's mechani smfor defining

/1 "additional operations" to add our custom operation to

/l OCL's String primtive type

private voi d defineCustonOperations() {
/1 pattern-matchi ng operation
regexiat ch = Ecor eFact ory. el NSTANCE. cr eat eEQper ati on();
regexMat ch. set Nane("regexMat ch");
regexiat ch. set EType(get OCLSt andar dLi brary().getString());
EPar amet er parm = Ecor eFact ory. el NSTANCE. cr eat eEPar aneter () ;
parm set Name("pattern");
parm set EType(get OCLSt andar dLi brary().getString());
regexMat ch. get EPar anet er s() . add(parnj ;

/] annotate it so that we will recognize it

/1 in the eval uation environment

EAnnot ati on annotati on = EcoreFact ory. el NSTANCE. cr eat eEAnnot ati on() ;
annot ati on. set Sour ce(" MyEnvi ronnent");

r egexMat ch. get EAnnot ati ons() . add(annot ati on);

/1 define it as an additional operation on OCL String
addOper ati on(get OCLSt andar dLi brary().getString(), regexhatch);

}

Next, wewill define the corresponding specialization of the Ecor eEval uat i onEnvi r onnment that
will know how to evaluate calls to this custom operation:

Eclipse OCL 5.0 155

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/ecore/EcoreEnvironment.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/ecore/EcoreEvaluationEnvironment.html

Classic Ecore/UML
Programmers Guide

cl ass MyEval uati onEnvi ronment extends EcoreEval uati onEnvironnment {
MyEval uat i onEnvi ronment () {

super () ;
}

MyEval uat i onEnvi r onment (
Eval uati onEnvi ronment <ECl assi fi er, EOperation, EStructural Feature
EC ass, EObj ect> parent) {
super (parent);

}

public Object call Operati on(EOCperation operation, int opcode,
Obj ect source, Object[] args) {
if (operation.get EAnnotati on("M/Environment") == null) {
/1 not our customregex operation
return super.call Operation(operati on, opcode, source, args);

}

if ("regexMatch". equal s(operation.getNanme())) {
Pattern pattern Pattern. conpile((String) args[0]);
Mat cher mat cher pattern. matcher ((String) source);

return mat cher. matches()? natcher.group() : null

}
t hr ow new Unsupport edOper ati onException(); // unknown operation
}
}
Finally, we define a specialization of the Ecor eEnvi r onnent Fact ory_that creates our custom
environments:

Eclipse OCL 5.0 156

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/ecore/EcoreEnvironmentFactory.html

Classic Ecore/UML
Programmers Guide

cl ass MyEnvi ronnment Fact ory ext ends Ecor eEnvironnment Factory {
publ i ¢ Environnent <EPackage, EC assifier, EOperation, EStructural Feature,

EEnunli teral, EParaneter, EQbject, Call OperationActi on,

SendSi gnal Action, Constraint, EC ass, EObject> createEnvironnment () {
M/Envi ronment result = new MyEnvi ronnent (get EPackageRegi stry());
resul t.setFactory(this);
return result;

}

publ i ¢ Environnent <EPackage, EC assifier, EOperation, EStructural Feature,
EEnunli teral, EParaneter, EQbject, Call OperationActi on,
SendSi gnal Action, Constraint, EC ass, Ebject>
cr eat eEnvi ronnent (Envi r onnment <EPackage, EC assifier, EQperation,
EStructural Feature, EEnuniiteral, EParaneter, EQbject,
Cal | Oper ati onActi on, SendSi gnal Action, Constraint, EC ass,
EChj ect > parent) {
if (!(parent instanceof MyEnvironnment)) {
throw new I || egal Argunment Excepti on(
"Parent environment nust be ny environment: " + parent);

}

MyEnvi ronment result = new MyEnvironnent ((MyEnvi ronnent) parent);
resul t.setFactory(this);
return result;

}

publ i ¢ Eval uati onEnvironnment <ECl assi fi er, EOperation, EStructural Feature,
EC ass, EObj ect> creat eEval uati onEnvironnment () {
return new MyEval uati onEnvironment () ;
}

publ i ¢ Eval uati onEnvironnment <ECl assi fi er, EOperation, EStructural Feature,
EC ass, EObj ect> creat eEval uati onEnvi r onnment (
Eval uati onEnvi ronment <ECl assi fi er, EOperation, EStructural Feature,
EC ass, EObj ect> parent) {
return new MyEval uati onEnvironnent (parent);

}

Now, we can use our environment to parse the kind of expression that we were looking for:

OCL<?, EC assifier, ?, ?, ?, ?, ?, ?, ?, Constraint, EC ass, EQbject> ocl;
ocl = OCL.newl nstance(new MyEnvironnent Factory());

OCLHel per<EC assifier, ?, ?, Constraint> hel per = ocl.createOCLHel per();
hel per. set Cont ext (MyPackage. Li t eral s. PERSON) ;

/1 double the '\' to escape it in a Java string literal
Constraint vali dSSN = hel per. createl nvari ant (
"sel f.ssn.regexMatch("\\d{3}-\\d{3}-\\d{3}') <> null");

Person person = get PersonToVal i date();

Systemout.printf("% valid SSN:. %%", person, ocl.check(person, validSSN));

6.6.3. Selecting a Package Lookup Strategy

When package names are provided in OCL expressions, eg., when representing types in an
ocl | ski ndOF call, these names arelooked up using aspecific strategy. By default, thelookup proceeds
starting at the parsing context, traversing up the package hierarchy. If the package name cannot be
resolved this way, for the Ecore binding a lookup is performed in the EPackage. Regi stry. By
default, the package name provided is compared to the names of the packages that are contained asvalues
intheregistry.

Eclipse OCL 5.0 157

Classic Ecore/UML
Programmers Guide

In rare cases there may be ambiguous package names. For example, if an OCL expression isto be parsed
using aclassifier from the OCL AST metamodel asits context, the context packageisocl : : ecore. If
such an expression istrying to reference atype from the EMF Ecore package with package nameecor e,
the EMF Ecore package is hidden by the lookup happening relative to the context package. Instead of the
EMF Ecore package, theocl : : ecor e package will be found.

Such an ambiguity can be resolved by using a dedicated EPackage. Regi st ry which registers the
otherwise ambiguous packages with aspecia “URI” that represents asimple alias name for the package.
In order to force the OCL parser to look up packages by those alias names, an option needs to be set on
the OCL environment, as follows:
Regi stry r = new EPackageRegi stryl nmpl ();
r.put Al | (EPackage. Regi stry. | NSTANCE) ;
r.put ("EMFEcore", EcorePackage. el NSTANCE) ;
r.put ("OCLEcore", org.eclipse.ocl.ecore. EcorePackage. el NSTANCE) ;
OCL ocl = OCL.new nstance(new Ecor eEnvironnent Factory(r));
((EcoreEnvi ronment) ocl.getEnvironnment()).setOption(
Par si ngOpt i ons. PACKAGE_LOOKUP_STRATEGY,
Par si ngOpt i ons. PACKAGE_LOOKUP_STRATEG ES.
LOOKUP_PACKAGE_BY_ALI AS_THEN_NAME) ;
Hel per hel per = ocl. creat eOCLHel per();
hel per. set Cont ext (
org. ecl i pse. ocl . ecore. Ecor ePackage. el NSTANCE. get OCLExpr essi on()) ;
org. ecl i pse. ocl . ecore. OCLExpressi on expr = hel per.createQuery(
"sel f.ocl | skKi ndOf (EMFEcor e: : ECl assi fier) and not
sel f. ocl | sKi ndOf (OCLEcor e: : OCLExpression)");

In the example above, two packages with ambiguous simple names (EMF Ecore package
and OCL Ecore package, both with simple name ecore) are added with aias names
EMFEcore and OCLEcore, respectively. The package lookup strategy is then set to
LOOKUP_PACKAGE_BY_ALI AS_THEN_NAME which alows OCL expressions to reference the
packages by their diases, asin sel f. ocl | sKi ndOf (EMFEcore: : EC assifier) and not
sel f. ocl | sKi ndOF (OCLEcor e: : OCLExpr essi on).

Note, that the use of a delegating registry (constructor
EPackageRegi st ryl npl (EPackage. Regi st ry)) does not work because aregistry initialized
this way does not forward the call to val ues() which would be required by the OCL package |ookup
implementation. Instead, if the packages registered with the default registry are required, they need to be
copied to anew registry using put Al | as shown above.

6.6.4. Customizing Hidden Opposite Lookup and Navigation

The default _Ecor eEnvi r onnent Fact ory_ produces environments which can find references that
have an annotation with source http://schema. ong. or g/ spec/ MOF/ 2. 0/ enof . xm that
have adetail with key Pr operty. opposi t eRol eNane. Intheclassthat isthe type of the reference,
and all its subclasses, for OCL this annotation defines an otherwise “hidden” opposite property which
can be used in OCL expressions. This can be convenient when it is not possible or desirable to define an
explicit opposite reference, e.g., because the class that would have to own the opposite reference can't
easily be modified or the seriaization of that class must not be changed.

The logic used to find these “hidden” opposites and to navigate them is provided by implementations
of the OQpposi t eEndFi nder interface. By default, the Ecor eEnvi r onnent Fact or y uses the
Def aul t Opposi t eEndFi nder implementation. It performs the lookup of annotated references
by maintaining a cache based on the Ecore package registry. Successful navigation of those “hidden”
opposites requires an _ECr ossRef er enceAdapt er to be registered for the containment hierarchy
or the resource or resource set that should be used as the scope of the navigation.

Obviously, _ECr ossRef er enceAdapt er _ has a significant downside: it responds to “hidden”
opposite navigation requests only based on what has so far been loaded by EMF. If the set of
resources held by an underlying EMF storage system contains more resources than have so far been
loaded into the resource set, non-loaded content from that storage system won't be considered by the
ECr ossRef er enceAdapt er . Given a store with reasonable search capabilitiesit is desirable to take
advantage of these capabilitiesal so to perform reverse navigation of those“ hidden” opposites. To achieve
this, a specific implementation of the Opposi t eEndFi nder interface can be provided. It may be

Eclipse OCL 5.0 158

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/ecore/EcoreEnvironmentFactory.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/ecore/OppositeEndFinder.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/ecore/DefaultOppositeEndFinder.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/util/ECrossReferenceAdapter.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/util/ECrossReferenceAdapter.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/ecore/OppositeEndFinder.html

Classic Ecore/UML
Programmers Guide

a specialization of _Def aul t Qpposi t eEndFi nder , e.g., when the reference lookup based on the
Ecore package registry is sufficient and only the navigation behavior shall be redefined:

cl ass MyQpposi t eEndFi nder ext ends Def aul t Opposi t eEndFi nder {
My Qpposi t eEndFi nder (EPackage. Regi stry registry) {
super (registry);

}

@verride
public Object navi gat eQppositeProperty(EStructural Feature property, Object target) {

Col | ecti on<hject> result = null;

Ebj ect eTarget = (ECbject) target;

/1 do sonething clever, e.g., using your underlying store's query facility or
/1 the new EM- Query2 conponent (i ncubation)

I

return result;

}

With this, OCL can be instantiated using the custom opposite end finder as follows:

OCL ocl = OCL.new nstance(new Ecor eEnvironnent Fact or yW t hHi ddenOpposi t es(
EPackage. Regi stry. | NSTANCE, new MyQpposit eEndFi nder ()));

With this, when the use of a property in an OCL expression cannot be resolved to an attribute or
reference, the opposite end finder is asked to look for a correspondingly-named "hidden" opposite.
Navigation across this “hidden” opposite will then call the navi gat eOpposi t ePr operty method
on MyQpposi t eEndFi nder .

6.7. OCL Persistence

The Eclipse OCL component implementsthe OCL Abstract Syntax model as an EM F-based metamodel.
Thus, parsed OCL expressions and constraints can be serialized, for example in XMI documents. The
OCL 2.4 specificationisunclear about how the serialization of expressionsshould ook (thiswill be solved
in the next OCL 2.5 specification), especially where references to demand-created types are concerned.
This topic discusses the approach taken by the Eclipse OCL component to provide a practical solution
to this problem.

6.7.1. The Type Resolver

OCL defines a number of template metaclasses, including the Col | ecti onType metaclass and
its specializations, MessageType, and Tupl eType. In al of these cases, OCL specifies that
these templates are instantiated as needed in the OCL environment, and that only one instance
of a template exists for any given combination of template arguments. For example, only one
OrderedSet (String) exists and it is created on the occasion when it is first needed. Likewise,
the Ccl Message type for invocations of the EModel El enent : : get EAnnot ati on(ESt ri ng)
operationand the Tupl e{a : String, b : EC ass} type

The problem is, that the OCL Specification does not indicate how expressions that reference such
demand-created types can be persisted, because it does not define what should own these types. A
similar problem existsfor additional operationsand attributes definedin OCL viadef : expressions. The
TypeResol ver _API isresponsible for the demand-creation of these types and for their persistence.

Eclipse OCL 5.0 159

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/ecore/DefaultOppositeEndFinder.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/TypeResolver.html

Classic Ecore/UML
Programmers Guide

€3 Environment (1) TypeResolver

@ getTypeResclver [) getResource ()

@ definedttribute [) resolve ()

@ getidditionalattributes [) resolveCollectionType ()

@ defineOperation {) resolveTupleType ()

@ getidditionalOperations [) resolve TypeType ()

@ getDefinition () resolveOperationMessageType ()
@ undefine () resolveSignalMessageType ()
resolveAdditionalOperation ()
getAdditionalOperations ()
resolveAdditionalAttribute ()
getAdditionalAttributes ()

WS

PO O OO OODODOD

RN LT

(&) AbstractTypeResolver

@ AbstractTypeResolver (env : Environment)

@ AbstractTypeResolver [env ; Environment, resource ; Resource)
@ resolve (type: C) C

@ getResource () Resource

< createResource () Resource

Every Environnent has a TypeResol ver that persists demand-created types and additional
features. For aclient that doesn’t require persistence, the TypeResol ver will createaResour ce with
the dummy ocl : // scheme (no resource factory is provided for this scheme).

A client that does require persistence of OCL expressions and these demand-created
elements should provide a specific resource in which to store them, either via the __OCL
class's newl nst ance(Envi ronnent Fact ory, Resour ce) factory method or via the
Envi r onnent Fact ory interface’s| oad(Resour ce) method.

Resour ce nodel Resource = get Resour ceSet (). get Resour ce(
URI . creat ePl at f or nResour ceURI ("/ nodel s/ My. ecore", true), true);

/'l persist demand-created types etc. in ny nodel resource
OCL<?, EC assifier, ?, ?, 2?2, ?, ?, ?, ?, Constraint, EC ass, ECbject> ocl;
ocl = OCL. newl nst ance(Ecor eEnvi r onnent Fact ory. | NSTANCE, nyResour ce);

/1 use the OCL to parse constraints, store themin the Ecore nodel,
/1 and save everything together in one resource for a consistent,
/1l sel f-contai ned OCL environnent

The Abstract TypeResol ver class creates packages in which to store the different elements that
it creates: collection types, message types, tuple types, and additional operations and attributes. These
last are owned by classes that “shadow” the classifiersin which context they are defined, in the manner
by which the OCL specification’s adaptation for EMOF indicates that operations are to be “owned” by
EMOF Dat aType s.

An environment implementation can customize the way these demand-created elements are stored,
by choosing different packages or using some other strategy altogether. Or, using the default
TypeResol ver implementation, aclient of the OCL parser can find the demand-created objectsin the
resolver’s resource and relocate them as needed.

Eclipse OCL 5.0 160

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/Environment.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/OCL.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/EnvironmentFactory.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/AbstractTypeResolver.html

Classic Ecore/UML
Programmers Guide

6.8. Creating Metamodel Bindings

The Eclipse OCL component provides a generic specification of the OCL Abstract Syntax Model plus
bindingsfor two popular Eclipse metamodels: Ecoreand UML . Usersof the OCL API can likewise create
bindings for their metamodels, to integrate OCL with their modeling languages.

The _Envi r onnent _ interface has a generic type signature with several parameters, representing the
metamodeling constructs required by OCL, that it borrowsfrom UML, EMOF, and the other metamodels
that it targets. The Javadoc for that interface defines the mappings, and the same type parameter names
are used consistently throughout the OCL API.

© EnvironmentFactory “LISer
@ createEnvironment ()
@ createPackageContext ()
@ loadEnvironment ()
@ createClassifierContext ()
@ createlnstanceContext () “usen
@ createOperationContext ()
@ createAttributeContext ()
@ createEnvironment ()
@ createEvaluationEnvironment ()
@ createEvaluationEnvironment ()
@ createEvaluationVisitor ()

€3 EvaluationEnvironment
@ getValueOf ()

@ replace ()

@ add ()

@ remove ()

@ clear ()

@ overrides ()

@ callOperation ()

@ navigateProperty ()

@ navigatedssociationClass ()
@ createExtentMap ()

@ iskindOf ()

@ i5TypeOf ()

@ getType ()

@ ceateTuple ()

=

3 Environment wlisen
@ getFactory ()
@ getParent ()
@ setParent ()
@ getContextPackage ()
@ getContextClassifier ()
@ getContextOperation (
@ getContextProperty ()
@ getOCLStandardLibrary ()
@ getOCLFactory ()
@ getUMLReflection ()

3 UMLR eflection

wliSEnr) OCLFactory
)

wsen
E:C: Class

3 OCLStandardLibrary

@ getOdany ()

@ getOcvoid ()

@ getlnvalid ()

@ getOdInvalid ()

@ getBoolean ()

@ getString ()

@ getReal ()

@ getlnteger ()

@ getUnlimitedMatural ()

@ getOdType ()

@ getOclElement ()

@ getOcMessage ()

@ getSet ()

@ getOrderedSet ()

@ getBag ()

@ getSequence ()

@ getCollection {)

@ getState ()

@ getOclExpression ()

@ getT ()

@ getT2 ()

To provide ametamodel binding, a client must provide implementations of the following interfaces:

» Envi ronment and Envi r onment Fact or y, supplying suitable substitutions for the generic type
parameters. Note that not al of these are actually required; for example, Ecore does not have the
concept of St at e, soit just substitutes ECbj ect

e Eval uati onEnvi r onnent for accessing properties of run-time instances of models
* UMLRef | ect i on for introspecting models (instances of thetarget metamodel)
e OCLSt andar dLi br ary, providing the instances of the metamodel’sCl assi fi er metaclass that

implement the OCL Standard Library types
» OCLFact ory, providing afactory for all of the metaclasses of the Abstract Syntax Model

This last item, above, necessitates furthermore that the metamodel binding provide a concrete
specidization of the Abstract Syntax Model (in its entirety) that mixes in the target metamodel’s
correspondents of the UML Cl assi fi er and TypedEl enent metaclasses. The former is required
to provide compatibility of the metaclassesin the OCL Types with the target metamodel’ s type system.
The latter isrequired for compatibility of the metaclassesin the OCL Expr essi ons package with the
target metamodel’ styped elements.

6.8.1. The OCL Abstract Syntax Model

The following diagram summarizes the metaclasses of the OCL Types package:

Eclipse OCL 5.0 161

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/Environment.html

Classic Ecore/UML
Programmers Guide

0 Class 0 Class
O AnyType 3 ElementType © PrimitiveType
0 Class B0 Class
@ VoidType @ InvalidType
=0 Class i C: Class
=P ¢ Class =0 Class
D TupleType D TypeType
@ oclProperties () @ getReferredType ()
- E:C Class
£ C ¢ Class 0 Class
110 : Class P Class
3 CollectionType © MessageType

@ getElementType ()
@ setElementType ()
@ getkind ()

@ ocllterators)

@ getReferredCperation ()
@ setReferredOperation [)
@ getReferredSignal)

@ setReferredSignal ()

@ oclProperties [)

:C: Class 5 C Class EC: Class = C ¢ Class
E:0: Class =01 Class 210 Class 0l Class
£ SequenceType © BagType © SetType @ OrderedSetType

Thefollowing diagram summarizesthe call expression metaclasses of the OCL Expr essi ons package:

(1] OCLExpression

O callExp
@ getSource ()
@ setSource)

3 FeatureCallExp

@ isMarkedPre ()
@ setMarkedPre ()

3 NavigationCallExp
@ getQualifier ()
@ getNavigationSource ()
@ setMavigationSource ()

3 OperationCallExp
@ getArgument ()
@ getReferredOperation (
@ setReferredOperation (
@ getOperationCode ()
@ setOperationCode ()

)
]

) LoopExp
@ getBody ()
@ setBody ()
@ getlterator ()

) IteratorExp) TterateExp
@ getResult ()

@ setResult ()

© PropertycCallExp
@ getReferredProperty ()
@ setReferredProperty ()

3 AssociationClassCallExp

@ getReferredAssociationClass ()
@ setReferredAssociationClass ()

The following diagram summarizes the literal expression metaclasses of the OCL Expr essi ons
package:

Eclipse OCL 5.0 162

Classic Ecore/UML
Programmers Guide

3 OCLExpression
O LiteralExp
© Collectionkind “5%” | @ CollectionLiteralExp @ InvalidLiteralExp @ PrimitiveLiteralExp © NullLiteralExp @ EnumL iteralExp @ TupleLiteralExp
¥ BAG_LITERAL @ getkind () ® getReferredEnumLiteral () ® getPart ()
& COLLECTION_LITERAL @ setkind () @ setRefenedEnumLitera ()
& ORDERED_SET_LITERAL © getPart ()
& SEQUENCE_| ITERAL © issimpleRange () “ise»
& SET_LITERAL
O TupleLiteralPart
@ CollectionLiteralPart “lises © NumericLiteralExp 0 BooleanLiteralExp) StringLiteralExp ® getvdue ()
© getBodleansymbol () o getstringsymbl () o setvale ()
o setBockeansymbol () o setstingsymbol () o getattibute ()
o setattrbute ()
Qc ac
& getitem () & getFist () @ RealliteralExp O IntegerLiteralExp @ unlimitedNaturalLiteralExp
 setltem () & setfirst () B) © getlr 0 © getintegerSymbol ()
o getlast ()) (@] setlr () © setintegersymbol ()
o setlast () o isunimited ()

The following diagram summarizes the remaining metaclasses of the OCL Expr essi ons package:

O TypeExp
® getReferredType ()
® setReferredType ()

3 OCLExpression
3 UnspecifiedVvalueExp 3 MessageExp @ IfExp @ LetExp & VariableExp 3 StateExp
® getTarget () @ getCondition () @ getin () @ getReferredvariable () @ getReferredState ()
@ setTarget () @ setCondition () @ setin () @ setReferredvariable () @ setReferredState ()
@ getArgument () @ getThenExpression () @ getVariable ()
@ getCalledOperation () @ setThenExpression () @ setVariable [)
@ setCalledOperation () @ getElseExpression () “Lisen

@ getSentSignal () @ setBlseExpression ()
@ setSentSignal ()
© Variable
@ getInitExpression ()
@ setInitExpression ()
@ getRepresentedParameter ()
@ setRepresentedParameter ()

6.9. Incrementally Re-Evaluating OCL Expressions
Using the Impact Analyzer

When Ecore metamodel s use many OCL invariants and the models constrained by these invariants grow
large, re-evaluating the invariants becomes a performance challenge. As OCL expressions can havigate
freely across resource boundaries, changesto amodel element in one resource can easily affect invariants
for model elementsin other resources. To reliably catch all invalidated constraints after achangeit would
be necessary to re-evaluate all invariants on all their context objects regardless their resource. This does
not scale sufficiently well.

The | npact Anal yzer Fact ory interface allows tool builders to efficiently determine a much
smaller set of model elements on which re-evaluation of expressionsis necessary after a change.

Given an OCL expression, the factory can be used to create an impact analyzer for a single expression
asfollows:

final OCLExpression e = ...;
final InpactAnalyzer inpactAnalyzer =
I npact Anal yzer Fact ory. | NSTANCE. cr eat el npact Anal yzer (
e, /] the expression to re-evaluate increnentally
false, // whether to re-evaluate when new context objects appear
OCLFact ory. | NSTANCE) ;

The impact analyzer obtained this way can create a change notification filter which can then be used to
register for notifications that indicate a change which may affect the value of the expression. Consider
the following example:

Eclipse OCL 5.0 163

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/impactanalyzer/ImpactAnalyzerFactory.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/ecore/OCLExpression.html

Classic Ecore/UML
Programmers Guide

Resour ceSet myResourceSet = ...;
EventFilter filter = inpactAnal yzer.createFilterForExpression();
Event Manager event Manager =
Event Manager Fact ory. el NSTANCE. get Event Manager For (nyResour ceSet) ;
event Manager . subscri be(filter, new Adapterlnpl () {
public void notifyChanged(Notification notification) {
Col | ect i on<ECbj ect > val ueMayHaveChangedOn =
i npact Anal yzer . get Cont ext Cbj ect s(notification);
for (EQbject eo : val ueMayHaveChangedOn) {
/1 ... performsone re-evaluation action of e for context eo here
}
}
1)

The event manager can be used to register the event filters of several OCL expressions with their
respective adapters. The adapters for different expressions do not have to be distinct but may optionally
be shared. The following figure shows how the classes relate, asa UML class diagram:

=<hterface >

ImpactAnalyzer | +expression <<interface >>

. = OCLExpression
| ExpressionOfimpactAnalyzer 1
createFilterFarExpression)

One ImpactAnalyzer and one

|
: EventFilter per OCLExpression

<<produces>> Adaplers can optionally be used for
: more than ene expression
Kl
=<lnterface >> =<Interface ==
EventFilter Adapter
1 1
A + +adapter
FiterinRegistration AdspterinRegistration

+registrmtions | ~-nterace == | [pany axpressions' flters [
- __Registration | | ang adapters can be

0.* registerad with a single
EventManager
Registration
[<<interace == .
EventManager +esourceSets 0% <<intedface ==
| | . R
active : Boolean Resource SefOfEventManager esourceSet

from &mif

EventManager can listen for
changes coming from zero or
more ResourceSels

For each OCL expression a new impact analyzer is used. The event filters produced by them can be

registered with the same event manager. The following figure shows a typical instance collaboration
diagram in UML notation.

n

EveniF iiter
@l i et
MR LANSYT T DCLExpression ke
oS Rigiatration
I:
al
acapreddapler
Tl i
- Everiha . Set
‘ B presourceSat |
o a2 EveniF ifles
& hnal O
impacianalyzer - OCLEspreasion .
;1 repbmtions

adapher Fagintraton

The event manager factory and the event managers it produces lay the scalable foundation for the re-
evaluation process. Even if it has to manage many subscriptions, its performance does not degrade as it
would if the change notification filters were evaluated one after the other. With this it becomes possible
to register many OCL expressions for change impact analysis as shown above. The figure below shows
atypical default configuration of an event manager, asaUML instance collaboration diagram.

Eclipse OCL 5.0 164

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/eventmanager/EventManagerFactory.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/eventmanager/EventManager.html

Classic Ecore/UML
Programmers Guide

fl:
EventFilter

al:

ik | Adapter

Registration '

registrations 2:
EventFilter

rs . | am ° 2 filter
R Set ' istrati - -
esource !} . EventManager_ R _ Reglslratmn_ - a2 -
adip rAdaEtEr |

o s ra: B
Registration EwentFilter

aj:
Adapter

The event manager in the figureis configured to listen to the change events coming from anything inside
the resource set. In this example it is shown with three different event filters, each coming with its own
adapter handling those change notifications matches by the respective filter.

As described in more detail in the Javadoc, event managers may be re-used, temporarily deactivated and
new ones may be created specifically upon request. Thisway it ispossibleto have several event managers,
e.g., listening for changes during different phases of a model’s life cycle without having to create and
initialize the event managers again and again. Also, an event manager is not restricted to listen to the
changes of exactly one resource set. The following figure shows a not so typical configuration, again as
aUML instance collaboration diagram.

em1: rsl:
EventManager ResourceSet
9 esourceSets. ———————————— |

[T] mwmﬁe&*| =2 -
EventManager
g rescourceS ets ResourceSet

resourceSets

em3 : A rs3:
EventManager | ResourceSet
emd : rs4 ;
EventManager ResourceSet
g resourceSets

6.9.1. Using the Impact Analyzer in EMF Editors
The org. eclipse.ocl.exanpl es. i npactanal yzer. ui package provides experimental
support for embedding the impact analyzer in EMF editors. Adding the lines
@uppr essWar ni ngs(" unused") /1 not read; just used to avoid GC
private Revalidator revalidator; // fromcollecting re-validator
to the field declarations of an editor class, and adding the lines

reval i dator = new Reval i dator (edi ti ngDomai n, OCLFact ory. | NSTANCE,
Def aul t Opposi t eEndFi nder. get | nst ance(),
MyMet anpdel Ecor ePackage. el NSTANCE) ;

Eclipse OCL 5.0 165

Classic Ecore/UML
Programmers Guide

at the end of the editor class's cr eat evbdel () method turns on this experimental support for the
respective editors. Consequently, changes in the editor’'s Resour ceSet will trigger the re-evaluation
of the affected invariants on the set of context objects determined by the impact analyzer. Error markers
of successfully validated constraints will be removed, markers for invalid constraints are produced. As
is obvious aso from the exanpl es part of the package name, thisis not yet production-ready code. It
may change or disappear without notice.

6.9.2. Algorithm Outline

The basicideaon which theimpact analyzer’ salgorithm isbased isthis: take the EMF change notification
and see which elementary subexpressions, such as property call expressions, are immediately affected
by the change. From these pairs of (subexpr essi on, nodel el enent) itis possibleto walk
the expression tree and navigate “backwards’ from the model element to the candidates for the sel f
variable for which the subexpression may evaluate to the model element indicated by the notification.
Recursive operation calls and general - >i t erat e(. . .) expressions complicate matters and lead to
arecursive agorithm for the impact analysis.

It is permissible to use calls to OCL-specified operations. The impact analyzer will trace changes
considering the called operation’ s body expression.

Theuse of al | | nst ances inside an expression may be nasty for analyzing the impact of a change
because then it may no longer be possible to trace the change back to the possible values for sel f .
In those cases the impact analyzer will simply “give up” and return a collection of all instances of the
expression’s context type and its subtypes.

6.9.3. Impact Analyzer Configuration, Scopes

The impact analyzer can be created in severa different configurations as explained in detail in the
Javadocs . Particularly noteworthy isthe relationship between the Qpposi t eEndFi nder _and theway
anal | | nst ance expression is evaluated. Both depend on a notion of lookup scope. EMF does not
provide any particular rules or conventionsin this regard other than assuming that what has been loaded
into aResour ceSet iswhat tools can see. While thisis aworking procedure for forward navigation,
it doesn’'t help in defining ascopefor al | | nst ances and reverse navigation when there is no explicit
opposite property.

For this purpose, Eclipse OCL has introduced the _Opposit eEndFi nder interface through
which reverse navigations of references and al | | nst ances lookups can be performed. Its default
implementation is based on the EMF default which isto consider the contents of a Resour ceSet the
universe. Other implementations are possible, however, such as one that uses EMF Query?2 to perform
the necessary |ookups.

A default OCL evaluator will always use the current Resour ceSet to determinethe set of all instances
of atype. If a client has used an opposite end finder that implements a certain lookup strategy then
the default al | | nst ances evaluation is most likely inconsistent with the scope definitions of that
opposite end finder. To avoid such problems, aspecific OCL factory can create OCL instancesthat ensure
consistency between opposite navigation and al | | nst ances evaluation.

Other configuration options (see Act i vat i onOpt i on_concern the specific algorithm used for tracing
back from a change natification to the set of context objects for which the expression may have changed
its value. The default selection has proven to be the fastest for a set of benchmarks. However, mileage
may vary, and we'd like to encourage users to experiment also with the non-default configurations.

6.10. Delegates

EMF provides three delegation mechanisms that enable functionality not directly supported by EMF to
be delegated to a technology that can support it.

» aValidation Delegate supports checking additional invariants on an EClassifier

» aSetting Delegate supports getting an initial or derived computed value for an EStructural Feature
 an Invocation Delegate supports the execution of afunction defined by an EOperation

and also

» aQuery Delegate supports the execution of afunction not defined by an EOperation

Eclipse OCL 5.0 166

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/impactanalyzer/ImpactAnalyzerFactory.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/ecore/opposites/OppositeEndFinder.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/ecore/opposites/OppositeEndFinder.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/impactanalyzer/util/OCL.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/impactanalyzer/configuration/ActivationOption.html

Classic Ecore/UML
Programmers Guide

When you use the OCLinEcore editor, the required EAnnotations to support delegation are provided
automatically. This section provides sufficient detail to allow them to be maintained manually using the
Sample Ecore Editor or Java code.

These EAnnotations ensure that delegates can be used for both genmodeled and reflective models.
The use of genmodel to generate Java classes for your metamodel has significant performance benefits
for modeling, but currently makes little difference for OCL execution. The use of genmodel has the
disadvantage that you must install the Java classes and so the user of the Java classes must run in a
different Eclipse or standal one session to the developer. Conversely, using reflective models allows both
developer and user to share the same Eclipse session.

6.10.1. GenModel Settings

There is one GenModel setting that needs to be correctly set to ensure that OCL within generated Java
classes can successfully be invoked by itself. Make sure that support for reflective operation invocation
is generated by setting the Oper at i on Refl ecti on optiontotr ue.

6.10.2. OCL Delegate URIs

Each application implementing delegation has an associated Delegate URI, which is
 http://ww. eclipse.org/enf/ 2002/ Ecor e/ OCL for the classic evaluator
o http://ww. eclipse. org/enf/ 2002/ Ecore/ OCL/ Pi vot for the Pivot evaluator

Only the http://ww. ecli pse. org/ enf/ 2002/ Ecor e/ OCL was available in the Helios
release and so the Helios release of the OCLinEcore editor used that URI.

The OCLinEcore editor uses the Pivot metamodel which is more accurate and OMG compliant and so
in the Indigo release, the OCLinEcore editor usesthe ht t p: / / www. ecl i pse. or g/ enf/ 2002/
Ecor e/ OCL/ Pi vot URI and converts all incoming usage of http://ww. eclipse. org/
enf/ 2002/ Ecore/OCL URI to http://ww. eclipse.org/enf/ 2002/ Ecore/ OCL/
Pi vot .

Asdescribed in Thetwo Eclipse OCL sthe Pivot evaluator uses an intermediate Pivot model to hide Ecore
and UML2 and so allow full OMG-compliance. The Pivot evaluator is only available when the OCL
Examples and Editors feature has been installed as described in Installation.

The OCL Delegate URIs are registered using the
* org.eclipse.emf.ecore.invocation_delegate
* org.eclipse.emf.ecore.setting_delegate

* org.eclipse.emf.ecore.query_delegate
« org.eclipse.emf.ecore.validation_delegate
extension points.

6.10.3. Standalone Initialization
Theinitiaization code for standalone usage of EMF delegates is given in the Standalone section.

6.10.4. Invocation Delegates

An invocation delegate is invoked to execute the body of an EOperation. An invocation delegate must
be registered for the EPackage of the EClassifier of the EOperation.

The EPackage registration is provided by an EAnnotation on the EPackage
e source=http://ww. eclipse. org/ enf/ 2002/ Ecore

e key =i nvocati onDel egat es

e val ue = OCL- Del egat e- URI
The invocation delegate is provided by an EAnnotation on the EOperation
* source = OCL- Del egat e- URI

« key =body

e val ue = OCL- expressi on

Eclipse OCL 5.0 167

Classic Ecore/UML
Programmers Guide

The OCL- expr essi on isevaluated to provide the EOperation vaue with the containing EClassifier
asthesel f context object and the EParameters accessible as parameters from OCL. The return type of
the OCL- expr essi on must conform to the return type of the EOperation.

6.10.5. Setting Delegates

A setting delegate is invoked to provide the initial or derived value of an EStructural Feature. A setting
delegate must be been registered for the EPackage of the EClassifier of the EStructural Feature.

The EPackage registration is provided by an EAnnotation on the EPackage
e source=http://ww. eclipse. org/enf/ 2002/ Ecore
« key =settingDel egat es
e val ue = OCL- Del egat e- URI
The setting delegate is provided by an EAnnotation on the EStructural Feature
e source = OCL- Del egat e- URI
e key =derivation
e val ue = OCL- expression

The OCL- expression is evaluated to provide the EStructural Feature value with the containing
EClassifier asthe sel f context object. The result type of the OCL- expr essi on must conform to
the type of the EStructural Feature.

An initial rather than derivati on value may be specified. The i niti al is ignored if a
derivati on isalso specified.

6.10.6. Validation Delegates

A validation delegate isinvoked to provide additional validation of an EClassifier. A validation delegate
must be registered for the EPackage of the EClassifier for which the EClassifier provides any Ecore
invariants or Ecore constraints. Both Ecore constraints and invariants constrain an EClassifier, the
difference is that an Ecore invariant is realised by an EOperation and so an Ecore invariant may be re-
used by modeling environments that may wish to selectively check or re-check constraints.

The EPackage registration is provided by an EAnnotation on the EPackage
e source=http://ww. eclipse. org/ enf/ 2002/ Ecore
e key =val i dati onDel egat es
e val ue = OCL- Del egat e- URI
All Ecore constraints must be listed in an EAnnotation on the EClassifier
e source=http://ww. eclipse. org/ enf/ 2002/ Ecore
* key =constraints
e val ue = constrai nt Namel constrai nt Nane2 constrai nt Nane3
The validation delegate for each Ecore constraint is provided by afurther EAnnotation on the EClassifier
e source = OCL- Del egat e- URI
* key = constrai nt Nanme
e val ue = OCL- expressi on
The validation delegate for each Ecore invariant is provided by an EAnnotation on the EOperation
* source = OCL- Del egat e- URI
« key =body
e val ue = OCL- expressi on
The OCL- expression isevauated to validate the EClassifier with the EClassifier as the sel f

context object. The result type of the OCL- expr essi on must be Boolean.

6.10.7. Validation Messages

When a validation fails EMF generates a default diagnostic of the form The ' constr ai nt Nane'
is violated on 'constrai nedCbject’ .

Eclipse OCL 5.0 168

Classic Ecore/UML
Programmers Guide

If the OCLinEcoreEObjectValidator or CompleteOCL EObjectV alidator are used a custom message may
be supplied using an additional EAnnotation on the EClassifier.

e source = OCL- Del egat e- URI
» key = constrai nt Nane $nessage
e val ue = OCL- expression

The OCL- expr essi on isevauated to produce the custom message with the EClassifier asthe sel f
context object. The result type of the OCL- expr essi on must be String.

The severity of the diagnostic can also be customized by exploiting the four values of the Boolean value
of the constraint evaluation.

* true indicates successful vaidation

« f al se indicates unsuccessful validation with warning severity

» nul | indicates unsuccessful validation with error severity

* inval i d indicates afailureto perform validation (error severity)

6.10.8. Query Delegates

A query delegate is invoked to evaluate a parameterized query on a EObject for which there is no
corresponding EOperation. A query delegate is registered to install this query and allow its compiled
form to be cached. The delegate may then be invoked as many times as required for compatible context
objects and parameters.

This facility enables an EMF application to execute OCL without declaring or instantiating any OCL
classes.

The query delegate registration is analogous to direct use of
OCL. new nst ance() . creat eHel per().createQery()

The query delegate execution is analogous to OCL. eval uat e()

6.11. Ecore/UML Standalone Configuration
If you use Eclipse OCL within Eclipse you should find that the appropriate registrations are provided for
you automatically by the plugin registration mechanisms.

However if you use Eclipse OCL outside Eclipse, for instance in JUnit tests, you must provide the
corresponding registrations in your code.

6.11.1. Ecore

For the Ecore metamodel, the required registrations should be provided by invoking
org.eclipse.ocl.ecore.OCL.initialize(ResourceSet).

Thismay beinvoked with anull argument toinstall theregistrationsinthe global EPackage.Registry. This
is not normally recommended, but since thisis for your application, the integrity of the global registry
isyour responsibility.

It is normally recommended to install the registrations solely for use in your own ResourceSet and to
pass that to the initialize routine.

This initialization ensures that * .ecore is understood.

If you want to use EMF delegates to dispatch OCL, the required registrations may be provided by
org. eclipse.ocl.ecore. del egat e. OCLDel egat eDomai n.initialize(ResourceSet).

This may be invoked with a null argument to install the registrations in the global EPackage.Registry
rather than a specified local registry.

6.11.2. UML

For the UML metamodel, the required registrations should be provided in a similar way by invoking
org.eclipse.ocl.um .OCL.initialize(ResourceSet).

This initialization ensures that *.uml is understood that http://www.eclipse.org/ocl/1.1.0/
oclstdlib.uml is known and that standard pathmap: locations are resolvable. It also invokes

Eclipse OCL 5.0 169

Classic Ecore/UML
Programmers Guide

org.eclipse.um 2. unl . resources. util.UMVMLResourcesUtil.init(ResourceSet)
to ensure that al Eclipse and OMG UML namespaces and extensions are registered..

6.11.3. Xtext Editors

The Xtext Editors use the Pivot binding and so their initialiation is described in “Pivot Standalone
Configuration” #PivotStandal one.

The Xtext editors may be used with the Ecore or UML bindings in so far as the Complete OCL editor
provides a*.ocl document that may be parsed by the LPG parser, and the OCLinEcore editor provides
embedded OCL that may be executed by either evaluator.

Eclipse OCL 5.0 170

Chapter 7. Unified or Pivot
Programmers Guide

The Unified or Pivot Programmers Guide describes the ways in which the Pivot binding Eclipse OCL
can be used from Java programs.

ThePivot binding wasfirst available asan examplesquality prototypein 3.1.0 (Indigo). The Pivot binding
will become the preferred binding in 6.0.0 (Mars). The older Ecore and UML bindings are described in
a separate Ecore/lUML Programmers Guide.

The OCL Parser/Interpreter provides an implementation of the Object Constraint Language 2.4
specification for EMF-based metamodels and models. It offers OCL constraint and query parsing and
evaluation, model-based validation, and provides an infrastructure for content assist in textual editors.

The following features are supported in the current version:

* Classifier invariant constraints

 Operation precondition and postcondition constraints and body conditions
* Property constraints (initial-value and derivation)

« Attribute and operation definitions (def: expressions)
» Package context declaration

» Basic values and types

 Collection types

» Navigation of attributes and association ends
 Operation invocation

* Iteration expressions (all standard iterators)

» Let expressions

o |If expressions

* Tuples

» Message expressions, including unspecified values

» Operations predefined by OCL: allnstances(), ocllsKindOf(), ocllsTypeOf(), oclAsType(),
oclIsNew()

 Escape syntax for illegal names: type, operation, attribute, etc. namesthat correspond to OCL reserved
words can be escaped in the standard fashion using aleading underscore (*). In addition, names that
contain spaces or tabs can be escaped by enclosing them in double-quotes (‘"'; this is non-standard).
eg.,sel f.owedRul e->forAll (c : Constraint | c._context = self)

The above constructs are supported by the parser for parsing and for evaluation, with the exception of the
ocllsNew() operation and message expressions. All of the above are supported for both Ecore and UML
models. The following are supported by default for UML (both in parsing and evaluation):

» Navigation of non-navigable association ends (including those that are owned by the association)
* Qualified association end navigation

» Navigation to association classes, including source qualifiers

» Operations predefined by OCL : ocllsInState()

The following features are provided in addition to the OCL specification:

* String case conversion operations: toUpper(), toL ower()

 Support for comparison (<, <=, etc.) and sorting of any java Conpar abl e sof conformant types
» Trangitive closure of associations; closure(expr : OCLExpression) iterator

* Navigation of “hidden” opposites of references specified in Ecore models using a
Property. opposi t eRol eNane annotationwithsourceht t p: / / schena. ong. or g/ spec/
MOF/ 2. 0/ emof . xm on the forward reference, producing an Qpposi t ePropertyCal | Exp
expression

Eclipse OCL 5.0 171

http://www.omg.org/spec/OCL

Unified or Pivot Programmers Guide

The OCL implementation is defined in plug-ins for convenient deployment in Eclipse, but asis the case
for EMF, it can aso be used stand-alone. The plug-ins are partitioned thus:

e org.eclipse.ocl.exanpl es. donai n: the neutral Pivot model interfaces.

* org. eclipse.ocl.exanpl es. pi vot : the neutral Pivot model and evaluator.
e org.eclipse.ocl.exanpl es.|ibrary:theextensible OCL Stndard Library.
» org.eclipse.ocl.exanmpl es. codegen: the OCL to Java code generator.

» org.eclipse.ocl.exanpl es. debug. . . : the extensible debugger.
» org.eclipse.ocl.exanmpl es.validity:theValidation View.
» org.eclipse.ocl.exanpl es. xtext...: Xtexteditors.

7.1. Validators

When using the Pivot metamodel, there are two specialized validators available to support integration of
OCL into alarger Ecore environment.

7.1.1. OCLinEcoreEObjectValidator

Unfortunately, in the Indigo release, EMF does not support this customization and so must be activated
by explicitly using an EValidator that is aware of the ValidationDelegateExtension extended API. This
isavailable by using the OCLinEcoreEObjectValidator, which you may install globally by:

EVal i dat or. Regi stry. | NSTANCE. put (nul I, new OCLi nEcor eEQbj ect Val i dator());

or more selectively by adjusting the inheritance of the Validator class generated by EMF from (for a
model of a Company):

i mport org.eclipse.enf.ecore.util.EObjectValidator;

/**
* <l-- begin-user-doc -->
* The Val i dator for the nodel.
* <I-- end-user-doc -->
* @ee conpany. ConpanyPackage
*/

public class ConpanyVal i dator extends EQbject Validator {

to
i mport org. eclipse.ocl.exanpl es. xtext.oclinecore.validation. OCLi nEcor eEOQbj ect Val i dat or;

/**

* <I-- begi n-user-doc -->

* The Validator for the nodel.
* <l-- end-user-doc -->

* @ee conpany. ConpanyPackage
* @enerated not
*/
public class ConpanyVal i dat or extends OCLi nEcor eEQbj ect Val i dat or {

Note the @generated not that indicates that the class interface is manually defined. Do not use
@generated NOT since that indicates that the whole classis manually defined.

7.1.2. CompleteOCLEODbjectValidator

The CompleteOCL EObjectValidator is used to enable Complete OCL documents to participate in the
validation processing of an Xtext editor.

The APIsfor merging Complete OCL and Ecore as intermediate Pivots and then migrating the Pivot back
to Ecore are experimental .

7.2. The Pivot Evaluator

The Pivot evauator is a complete reimplementation of the classic evaluator to exploit experience and
the Pivot metamodel

Eclipse OCL 5.0 172

Unified or Pivot Programmers Guide

* numeric growth beyond 32/64 bits is accommodated

» equal numbers are equal regardless of type

* templated types are supported

* library operations are modeled and extensible

» oclType() returns a Metaclass(Ocl Self) offering full reflection without loss of static typing
* optimised virtual function dispatch tables

 code generation to Java

The APIs of the two evaluators are very similar since Ecore compatibility is very important. For basic
OCL evauation, users should not notice any functional difference between the two evaluators. The Pivot
evaluator is generally between 2 and 5 times faster as well as being more accurate. The code generated
evaluation may be afurther 20 times faster.

7.2.1. The Evolving Pivot Value System

The classic evaluator uses Ecore and Javalibrary representations such as EObject, Integer, String and Set
directly for evaluation. This avoids conversion costs but incurs OCL accuracy challenges for numeric
equality and growth.

The Juno release of the Pivot evaluator use polymorphic Val ue representations such as EObjectValue,
IntegerValue, StringValue and SetVaue. Thisavoidsthe OCL accuracy difficulties but requires wrapper
objects and incurs conversion costs wherever a compatible Ecore API isin use.

The IntegerValue and RealValue classes avoid the equivalence and accuracy problems of Integer and
Double by implementing Object.equal s(Object) with OCL semantics.

The costs of the polymorphic Boolean, String and EObject wrappers became apparent when testing the
code generator and so the Kepler and Luna releases use a hybrid representation. Unboxed values (the
natural Ecore and Java representation) are used wherever OCL and Java have compatible semantics, that
isfor Boolean, String, null, invalid/exception and EObjects that are not Types. Boxed polymorphic value
representations are used wherever OCL and Java semantics differ, that is for IntegerValue, ReaValue,
CollectionValue, TupleVaue and TypeVaue. This avoids unnecessary conversion costs, but requires
many instanceof tests to compensate for the lack of Vaue polymorphism. When generating code, static
analysis can often eliminate many of the instanceof cases and so the hybrid representation is faster.

7.2.2. The Pivot Value System

Every value has a unique type identity supervised by thel dManager class. This unique identity can be
shared by multiple OCL applications that may have distinct type systems as a result of Complete OCL
complements.

Every value has atypethat is determined from its type identity by atype-system-specific | dResol ver
instance, which aso supports conversion between boxed and unboxed value representations.

7.2.2.1. Value Conversions

The values are managed by a Val ueFact ory which provides many utility methods such as
Val ueFact ory. val ueO (Obj ect) for creating a Val ue from a naked Java object. The reverse
conversion from a value to a naked Java object may be be performed by Val ue. asObj ect () with
methods in derived value classes providing stronger type returns.

7.2.2.2. Polymorphic Integers

The | nt eger Val ue interface has a family of IntintegerVauelmpl, LonglntegerValuelmpl and
BiglntegerValuelmpl realizations that use Java types internally but support numeric growth where
necessary without imposing the overheads of Biglnteger on the vast mgjority of mundane usages.
The wrapping of i nt in | nt eger | nt Val uel npl is very comparable to the wrapping of i nt in
j ava. | ang. | nt eger sothereislittle performance or representation cost.

This enablesthe Pivot evaluator to handle unlimited integers as specified by the OMG OCL specification.

Prior to the Juno release the handling of greater than 32 bit integers in the classic
evaluator was suspect. The Juno release enhances support to allow for 64 bit integers
but makes no provision for greater than 64 bit evaluations.

Eclipse OCL 5.0 173

Unified or Pivot Programmers Guide

7.2.2.3. Polymorphic Collections

The Col | ect i onVal ue interface has multiple implementations for Bag, OrderedSet, Sequence and
Set with implementations that observe OMG OCL semantics.

The classic implementation uses Java collections directly, which unfortunately means
that the Java semantics for equality is used. Consequently the classic evaluator
incorrectly evaluates Set { 1, 1. 0} - >si ze() as2.

Using a distinct hierarchy of collection classes opens up opportunities for smart operation, such as in-
place update for collections that are rendered redundant by a calculation.

The classic implementation creates a new collection at every opportunity.

7.2.2.4. Polymorphic Objects

The Obj ect Val ue interface has an implementation for EObject and further implementations for more
specialized objects such as types.

The Pivot evaluator can be used on alternate data models by providing an aternate Cbj ect Val ue to
wrap an alternative form of data object.

The classic implementation uses EObject directly, which makes use of non-EObject
data models rather hard.

7.2.3. The Pivot Evaluator Type System
The Pivot Evaluator uses avery lightweight type system so that aternate implementations can be used.
For compiled evaluation, a dispatch-table based implementation is used.

For OCL compilation, a UML-aligned representation of the combined UML, OCL, library and user type
systemsis used.

The classicimplementation useseither UML or Ecore meta-model sdirectly, with Ecore
as the meta-meta-model. Consequently there was no support for ocl Type(). Reflection
was availablein the non-OMF Ecore domain, so the meta-meta-classis“EClass’ rather
than “Class’.

7.2.4. The Pivot Evaluator Implementation System

The Pivot evaluator may be used in an interpreted form similar to the classic evaluator. In this form the
evaluator performs a tree-walk over the Abstract Syntax Tree of the OCL expression. Languages that
extend OCL may extend this tree-walk by implementing the relevant visitor evaluations for additional
AST nodes.

A partially optimized code generator is available for the Pivot evaluator for which the code generator
walks the AST at compile-time. The code generator may be extended to support code generation for
languages that extend OCL. See the QVTi code generator in the QVTd project as an example.

7.2.5. Polymorphic Implementations

The OCL Standard Library comprises packages of classes with one class per library feature, each class
implementing the polymorphic implementation interface.

Provision of additional library function therefore requires
« provision of the Java class for the library feature
* declaration of the library feature

Library features (properties, operations and iterations) are declared in a Standard Library model that
identifies the invocation signature and binds it to a Java implementation.

Eclipse OCL 5.0 174

Unified or Pivot Programmers Guide

type Collection(T) : CollectienType conformsTo OclAny {

operation asSet() : Set(T) =»
‘org.eclipse.ocl.examples. Library. collection. CollectionAsSetOperation’;

iteration exists(i : T | body : Lambda T{) : Boolean) : Boolean
=» ‘org.eclipse.ocl.examples. library.iterator. ExistsIteration’;
iteration exists(i : T, j : T | body : Lambda T() : Boolean) : Boolean
=» ‘org.eclipse.ocl.examples. library.iterator.ExistsIteration’;

The extract from / or g. ecl i pse. ocl . exanpl es. |i brary/ nodel / OCL-2. 5. ocl stdlib
shows the declaration of the Col | ecti on type as a templated type with a T parameter. The
Col I ect i on type conformsTo (extends/inherits/generalizes) the Ocl Any type and is an instance of
theCol | ecti onType meta-type.

The asSet operation takes no arguments and returns a Set(T), a
set of the collection template type. The declaration is bound to
org.eclipse.ocl.exanples.library.collection.CollectionAsSet Operation
which is the Java class hame of the implementation.

The exi st s iteration has two overloads, taking one or two iterators of the collection template type.
Theiteration body is alambda expression operating on a collection template element with no additional
arguments to return a Boolean value. The iteration also returns a Boolean value. The same Java
implementation classis used for both one and two argument forms.

The corresponding implementationsin the classic evaluator were mostly inlined within
the Eval uationVisitorlnpl.visitQOperationCall Exp method and so
were difficult to extend.

The corresponding declarations in the classic evaluator were partially modeled in
oclstdlib.ecore or oclstdlib.uml, athough in practice an equivalent manually code
model initialization is used. The type declarations used by the parser and analyzer are
independently coded and do not support iterations as modeled concepts.

7.3. Pivot Standalone Configuration

If you use Eclipse OCL within Eclipse you should find that the appropriate registrations are provided for
you automatically by the plugin registration mechanisms.

However if you use Eclipse OCL outside Eclipse, for instance in JUnit tests, you must provide the
corresponding registrations in your code.

org. eclipse. ocl . exanpl es. pivot. OCL.initialize(resourceSet);

org. ecl i pse. ocl . exanpl es. pi vot. um . UML2Pi vot . ini tialize(resourceSet)

org. ecl i pse. ocl . exanpl es. pi vot. nodel . OCLstdl i b.install();

org. ecl i pse. ocl . exanpl es. pi vot . del egat e. OCLDel egat eDomai n. i niti ali ze(resourceSet)

org. ecl i pse. ocl . exanpl es. conpl et eocl . Conpl et eOCLSt andal oneSet up. doSet up()

org. ecl i pse. ocl . exanpl es. ocl i necor e. OCLi nEcor eSt andal oneSet up. doSet up()

org. eclipse. ocl . exanpl es. ocl stdl i b. OCLstdl i bSt andal oneSet up. doSet up()

org. eclipse. ocl . exanpl es. domai n. utilities. Standal oneProj ect Map. get Adapt er (r esour ceSet);

These are elaborated on bel ow.

7.3.1. Models

For the Pivot metamodel, the required registrations should be provided by
invoking or g. ecl i pse. ocl . exanpl es. pivot. OCL.initialize(ResourceSet). This
initialization ensures that * .ecore is understood.

If *.uml support is also required, invoke
org. eclipse.ocl.exanpl es. pivot.um . UM.2Pivot.initialize(ResourceSet)

as well. This initialization ensures that *.uml is understood and
that standard pathmap: locations are resolvable. It aso invokes
org.eclipse.um 2. un .resources. util.UVLResourcesUil.init(ResourceSet)

to ensure that al Eclipse and OMG UML namespaces and extensions are registered.

Eclipse OCL 5.0 175

Unified or Pivot Programmers Guide

7.3.2. OCL Standard Library

If you want to wuse the default OCL Standard Library you should invoke
org. ecli pse. ocl . exanpl es. pi vot. nodel . OCLstdlib.install () which installs
a compiled shareable form of /org.eclipse.ocl.exanples.!library/nodel/
OCL-2.5. ocl stdlib.

If you want to use an dternate library examine the code for the standard instalation above, and
if you want to compile your library examine the / or g. ecl i pse. ocl . exanpl es. bui | d/
src/org/ eclipsel ocl/exanpl es/buil d/ Gener at eOCLstdl i bModel . mmve2 launcher
for the /org.eclipse.ocl.exanples.build/src/org/eclipsel/ocl/exanples/
bui | d/ accel eo/ generat eOCCLst dl i b. nmt| Acceleotemplate.

Notethat the library is extensible and importable so you may import your own library that in turn imports
the standard library.

If you neglect to install an OCL Standard Library, you get the error “No OCL Standard Library content
available’. If you provide a custom library that fails to meet the miinimal requirements of defining the
basic library types (e.g. Boolean, Set, Tuple) and methods (e.g. OclAny::“=") you get an error such as
“No 'Boolean’ typein the OCL Standard Library”.

7.3.3. Pivot Delegates

If you have textua OCL embedded within Ecore models you need to register the EMF delegates so
that EMF gets, calls or validates dispatch the embedded OCL to the OCL delegates. The required
registrations may be provided by OCLDel egat eDorai n. i nitial i ze(ResourceSet) fromthe
org. ecli pse. ocl . exanpl es. pi vot . del egat e package.

This may be invoked with a null argument to install the registrations in the global EPackage.Registry
rather than a specified local registry.

If you neglect to register delegates, you may get an error of the form "An exception occurred while
delegating evaluation of the ..."

7.3.4. Xtext Parsers
If you want to be able to convert any textual form of OCL toitsinternal pivot form you need to initialize
the relevant parser.
*.0cl Complete OCL documentsareinitialized by Conpl et e OCLSt andal oneSet up. doSet up() .
*.oclinecore metamodels are initialized by OCLi nEcor eSt andal oneSet up. doSet up()

*.oclstdlib OCL Standard Library definitions are initialized by
OCLst dl i bSt andal oneSet up. doSet up() .

* ecore, *.essentiadlocl, *.uml files or genera use of the query APl is initiaized by
Essenti al OCLSt andal oneSet up. doSet up() .

Each of the above ensures that everything that it requiresisinstalled. The various set ups can be found
in one of the following packages:

org. ecl i pse. ocl . exanpl es. xt ext . conpl et eocl

org. ecl i pse. ocl . exanpl es. xt ext . essenti al ocl .

org. ecl i pse. ocl . exanpl es. xt ext. ocl i necor e.
org. ecl i pse. ocl . exanpl es. xt ext . ocl stdl i b.

7.3.5. platform:/plugin and platform:/resource URIs

If youwanttobeabletousepl atform /plugin/... orplatform/resource/... URIsina
standal one configuration you need to configure the EMF package and URI map registries appropriately.
Thisisacostly activity that involves scanning the classpath and exploiting the content of any plugin.xml
and MANIFEST.MF files that are found.

org. eclipse. ocl . exanpl es. domai n. utilities.Standal oneProj ect Map. get Adapt er (resour ceSet) ;

creates a St andal onePr oj ect Map to cache all the scan results, initializes the ResourceSet and
installs itself as an adapter on the ResourceSet so that it can be retrieved again if needed. Users are

Eclipse OCL 5.0 176

Unified or Pivot Programmers Guide

strongly recommended to ensure that a single St andal onePr oj ect Map is shared by all clients and
so avoid incurring the classpath scan cost more than once.

(The St andal onePr oj ect Map has no OCL-specific functionality; it just cures a major problem in
the standalone usage of EMF.)

7.3.6. Classpath

If your standalone environment supports OSGI bundles, as will be the case when you use Eclipse to
launch a JUnit test or a transformation, the required plugin dependencies are easily configured in the
MANIFEST.MF using JDT quick fixes, or the Manifest editor.

For atotally standalone Javalaunch, you must identify the exact spelling of each JAR that you require and
identify it on your Java classpath. The Eclipse JARs may be found in the plugins folder adjacent to your
eclipse.exe. So you may need or g. ecli pse. ocl . conmon_1. 0. 0. v20120516- 1543. j ar
amongst many others. The required JARS can be recursively determined by looking at the Class Not
Found Exceptions from the Java launch and locating the plugin with a similar name prefix. Thisis very
tedious and has to be repeated each time you upgrade, so don’t do it. Use OSGI. However if you must,
the following dependency trees may provide some clues.

The dependency tree for the basic parsing and evaluation is:

org. ecl i pse. ocl . comon
org. ecl i pse. ocl . exanpl es. conmon
org. ecl i pse. ocl . exanpl es. donmai n
org. eclipse.ocl.exanples.library
org. ecl i pse. ocl . exanpl es. pi vot
org. ecl i pse. ocl . exanpl es. xt ext . base

org. ecl i pse. ocl . exanpl es. xt ext . essenti al ocl
org. ecl i pse. ocl . exanpl es. xt ext . conpl et eoc
org. ecl i pse. ocl . exanpl es. xt ext. ocl i necore
org. ecl i pse. ocl . exanpl es. xtext.oclstdlib

Additionally the Ul requires

org. ecl i pse. ocl . common. ui
org. ecl i pse. ocl . exanpl es. mar kup
org. ecl i pse. ocl . exanpl es. mar kup. ui

org. ecl i pse. ocl . exanpl es. xt ext. essenti al ocl . u
org. ecl i pse. ocl . exanpl es. xt ext . conpl et eocl . ui
org. ecl i pse. ocl . exanpl es. xt ext . ocl i necor e. ui
org. ecl i pse. ocl . exanpl es. xt ext . ocl stdl i b. ui
org. ecl i pse. ocl . exanpl es. xt ext. consol e

Y ou may aso need the Xtext, EMF, MWE, Orbit plugins and their dependencies

com googl e. guava
com googl e. i nj ect
or g. apache. | og4j
org. ecl i pse. enf. conmon
org. eclipse. enf.ecore
org. ecl i pse. enf. codegen
org. eclipse. enf. ecore. xni
org. ecl i pse. xt ext
org. ecl i pse. xt ext. conmon. t ypes
org. ecl i pse. xt ext. conmon. t ypes. ui
org.eclipse. xtext.u
org. ecl i pse. xtext. ui.shared
org. eclipse. xtext. uti

7.4. Pivot Thread Safety

OCL is declarative and side effect free and so particularly suitable for execution on multiple threads,
provided all shared context is maintained in ways that avoid inter-thread conflicts.

The classic Ecore-based OCL evaluation makes no attempt to guarantee thread safety and some of the
more recent functionality involving EMF delegate caches is very suspect for multiple thread usage. So
if you want thread safety use the Pivot-based evaluation.

Eclipse OCL 5.0 177

Unified or Pivot Programmers Guide

The thread safety of interpreted Pivot evaluation is similarly suspect, however the much faster code
generated evaluation is designed for thread sefety.

7.4.1. Code Generated Evaluation

The code-generated evaluator is intended to be thread-safe; all shared objects update their caches within
relatively fine-grained synchronized regions. However there are anumber of class static variablesthat are
not synchronized and might therefore experience at best a redundant multiple initialization and at worst
an assumed uniqueness violation. Thread safe code must therefore invoke:

org. eclipse. ocl . exanpl es. donmai n. val ues. util.ValuesUtil.initAll Statics()
to ensure eager initialization of unsynchronized class variables. This routine is itself synchronized and
so may be safely invoked on all threads, if it isnot practical to invoke it solely from just a startup thread.
It is not permissible to modify any part of any OCL object, array or collection.

Application code should not assume that the getter for a protected final field isinvoked internally and so
should not attempt to modify behavior by overriding it.

7.4.1.1. Design Notes
L oose miscellaneous static fields areinitialized by ValuesUtil.initAll Statics().

Most non-static fields are @NonNull and final eliminating thread hazards. However lazy caches cannot
be avoided and these require manual review. Caches shared across OCI invocations use Weak references
to avoid leakage.

Elementlds are unique and shared across OCL evaluations and so IdManager maintains a hierarchy of
synchronized cachesfor distinct forms of Elementld. Some Elementl ds such as TemplateParameterld are
subject to two-phase construction (constructor followed by install). It is assumed that a half-constructed
Elementld will not be made visible to other threads.

Values are optionally shared and so valuesUtil has afew loose statics for simple values such as FALSE,
and a synchronized cache for integers in the range -256 to 1024.

EvaluatorlterationManagers do not currently permit forking of iterations to multiple threads and may
malfunction if application code does so.

7.4.2. Interpreted Evaluation

Thisis not considered thread-safe. Superficial consideration suggests that the EMF delegate dispatching
in particular needs careful attention.

7.4.3. OCL Analysis

The Xtext-based functionality is only thread-safe in so far as Xtext imposes strict main/worker thread
disciplines. It isvery unlikely that activating additional worker threads will give satisfactory results.

7.5. Parsing Constraints and Queries

This section may be contrasted with the corresponding Parsing Constraints and Queries for the Ecore
binding to see examples of the small changes needed to migrate from the Ecore binding to the Pivot
binding.

The OCL parser provides two APIs for parsing constraint and query expressions. The OCLHel per
interface is designed primarily for parsing constraints and query expressions embedded in models, such
as Ecore or UML models. The OCL class serves as the main entrypoint into the parsing APl but also
implements the parsing of OCL documents, for example from text files. In both cases, the concept of
Envi r onnent iscrucial.

7.5.1. The OCL Environment

The OCL API provides aFacade for the various objects that support different aspects of OCL parsing and
evaluation activitiesin athat spans activities for which the meta-model s remain unchanged. A new OCL
Facade isrequired if the meta-models change.

Eclipse OCL 5.0 178

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/helper/OCLHelper.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/OCL.html

Unified or Pivot Programmers Guide

«Interface» M o . .
1 DomainStandardLibrary q_ | PivotStandardLibrary Q— | MetaModelManager

+ metaModelManager

Interface: M
+ environmentFactory N ” Q— - PivotEnvironmentFactory

; EnvironmentFactory

+ environment «Interface» K l—] pi i
i PivotEnvironment

/ g Environment

+ modelManager

£ ocL

«Interface» —
EI DomainModelManage! <}_ = PvotModeiManage;

+evalEnv

«Interface» M
[<}— — PivotEvaluationEnvironment]
= DomainEvaluationEnvironmen =

The OCL_classisasimpletype.

There is no need for the Ecore/UML template parameters that parameterize the
equivalent Ecore/UML class.

Behind the scenes, the unified Pivot variants of the primary UML, OCL and user and meta
models, complementing Complete OCL documents and Standard Libraries are maintained by a
Met aMbdel Manager , which aso maintains all the collection and tuple specialization singletons so
that they can be shared by subsequent processing. A distinct Met aMbdel Manager isrequired for each
combination of primary meta-models and complementing Complete OCL documents and so for safety
anew Met aMbdel Manager is created for each OCL session. Increased metya-model sharing can be
achieved by re-using Met aMbdel Manager swhen constructinga Pi vot Envi r onnent Fact ory .

An OCL parsing activity maintains the root and nested parsing context in _Envi r onnent _ instances
which are created by an Envi r onnent Factory .

Envi ronnment s nest. Usualy the root environment has no correlation to an element in the model,
or it may correspond to some Package providing a default namespace (called a package context).
Alternatively, it may contain one or more nested environments defining package namespaces. A package
context contains one or more classifier contexts, which in turn can contain operation and/or attribute
contexts. Whereas the purpose of a package context is primarily to assist in the look-up of named model
elements, the classifier, operation, and attribute contexts have deeper meaning.

A classifier context defines the type of the sel f variable in OCL constraints and queries. By itself, it
is the context for invariant constraints for the context classifier. Additionally, as the parent context for
operation and attribute constraints, it indicates the classifier in which context an operation or attribute
constraint applies; this may be the classifier that defines these features, or it may inherit them from some
more general classifier.

An Envi r onment may contain named Var i abl e stowhich OCL expressions can refer. The most
common of theseissel f . Othersinclude the parameters defined by an operation (and itsr esul t), in
the case of an operation context. The OCL API even allows clients to add variables, in code, to define
“global” names.

7.5.2. Creating an OCL Environment

The static factory methods on the OCL class are used to create instances. It isagood practiceto re-usethe
same OCL instance for al parsing and evaluation of constraints and queries on amodel while that model
isloaded (usually in some Resour ceSet inan editor). It isalso good practiceto invoke di spose()
to release all OCL -related Resource references.

Using the shared Pivot environment factory , we can create an OCL environment suitable for parsing
OCL constraints on any Ecore model and evaluating them on instances of the model:

Eclipse OCL 5.0 179

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/OCL.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/manager/MetaModelManager.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/utilities/PivotEnvironmentFactory.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/Environment.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/EnvironmentFactory.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/Variable.html

Unified or Pivot Programmers Guide

7.5.3.

7.5.4.

// create an OCL instance for Egore
OCL ocl = OCL.mewInstance(new PivotEnvironmentFactory());
[Text for cut and paste]

The OCL Helper

From an OCL instance, we can create a helper object with which to parse constraints and additional
operation/attribute definitions.

— +ocl —
— OCLHelper = OCL

The OCLHel per is primarily designed for parsing constraints and query expressions embedded in
models, providing the following API for that purpose:

» createQuery(): parsesaquery expression

» createConstraint(): parsesaconstraint of agiven Const r ai nt Ki nd

e createl nvari ant () : convenience for invariant constraints

» createPrecondition(): conveniencefor pre-condition constraints

e creat ePost condi ti on() : convenience for post-condition constraints

e creat eBodyCondi ti on() : convenience for body conditions

e createDerivedVal ueExpressi on() : convenience for attribute derived values

Different kinds of constraints require different context environments. The set Cont ext (),
set Qperati onContext (), and set Attri but eCont ext () methods create the appropriate
nested Envi r onment sinthe host OCL instance' s root environment.

Theresult of parsing aquery expression or aconstraint isan _Expr essi onl nOCL , an instance of the
Abstract Syntax Model.

The Ecore/UML binding variously produces a Constraint or OCLEXpression
result. A Constraint has too much context and an OCLExpression too little. An
ExpressionInOCL isjust right.

/f create an OCL helper object
OCLHelper helper = ocl.createOCLHelper(EXTLibraryPackage.Literals.LIBRARY);

ExpressionInOCL invariant = helper.createInvariant(
"books->forall(bl, b2 | bl <* b2 implies bl.title <> b2.title}");

ExpressionInOCL query = helper.createQuery(
"books->collect{b : Book | b.category)-rassSet()");

[Text for cut and paste]

Operation and Attribute Contexts

In the case of constraints on operations or attributes, the context consists of two elements:
the constrained operation/attribute and a classifier in the context of which the constraint is to
apply. This accounts for the possibility that a classifier defines constraints on inherited features.
As an example, consider the EModel El enent : : get EAnnot ati on(ESt ri ng) operation and
ERef er ence: : eRef erenceType property in the Ecore metamodel. These can be constrained as
follows:

Eclipse OCL 5.0 180

../references/6310-creating.txt
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/expressions/ExpressionInOCL.html
../references/6310-context.txt

Unified or Pivot Programmers Guide

EOperation oper = null;
for (EOperation next : EcorePackage.literals.EMODEL ELEMENT.getEOperations()) {
if ("getEAnnctation”.equals(next.getName())) {
oper = next;
break;

}

/f define a post-condition specifying the walue of EModelElement::getEAnnotation(EString).
'/ This operation environment includes variables representing the operation
// parameters (in this case, only “source : String")} and the operation result
helper.setOperationContext(EcorePackage.literals.ECLASS, oper);
ExpressionInOCL body = helper.createPostcondition(

"result = self.efnnotations->any(ann | ann.source = source)");

// define a derivation constraint for the EReference::eReferenceType property
helper.setPropertyContext(
EcorePackage.Literals.EREFERENCE,
EcorePackage.lLiterals.FREFERENCE __EREFERENCE_TYPE);
ExpressionInOCL derive = helper.createDerivedValueExpression(
"self.eType-rany(true).occlAsType(EClass)");

[Text for cut and paste]

7.6. Evaluating Constraints and Queries

In Parsing Constraints, we saw how to use the OCLHel per API for parsing OCL constraints and query
expressions. Parsing constraintsisvery interesting in itself, but we can also make OCL come alivein our
applications by evaluating these constraints. For this, OCL providesaQuery API.

7.6.1. The OCL Query

Like the OCLHel per for parsing constraints, the OCL facade object provides _Query_ objects for
evaluating constraints and query expressions.

- ExpressioninOCL

- Query

+ specification

The Query encapsulates an _Eval uat i onEnvi r onnent _ providing the run-time values of context
variables to the OCL interpreter. These context variables are set and retrieved using the following
methods:

e add(String, Object): addsaname-valuebinding for avariable

* replace(String, Object):replacesan existing variable binding
» renove() : removesavariable binding
» get Val uer (St ri ng) : obtains avariable value

The context variables of primary interest are sel f and, in operation constraints, the variables
corresponding to its parameters. The Eval uat i onEnvi r onnent API is aso used to supply values
for “global” variables added to the parsing Envi r onnment by the client.

Another important consideration in the evaluation environment is the al | | nst ance() operation,
which obtains the entire extent of a classifier. For data types, this is a simple problem: the extent
of an Enuner ati on is well defined and the extents of other kinds of Dat aType s are undefined.
For Cl ass extents, the Eval uat i onEnvi r onnent provides support for an extent map, mapping
classes to the sets of their instances, as determined by the client. A client sets the extent map using the
OCL. set Ext ent Map() method. The default extent map, if none is provided by the client, lazily
computes the extent of a class from the EMF Resour ceSet containing the context element of the
evaluation.

Eclipse OCL 5.0 181

../references/6310-define.txt
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/Query.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/EvaluationEnvironment.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/OCL.html#setExtentMap(java.util.Map)

Unified or Pivot Programmers Guide

So, after optionally setting values of context variables (other than sel f ; the Quer y takes care of this)
and an extent map, simply construct aquery and use it to eval uate the expression or check the constraint:

OCL ocl = OCL.pmewInstance();
OCLHelper helper = ocl.createOCLHelper(EXTLibraryPackage.Literals.LIBRARY);
ExpressionInOCL invariant = helper.createInvariant(

"books->forall(bl, b2 | bl <> b2 implies bl.title <> b2.title)");
ExpressionInOCL query = helper.createQuery(

"books->collect(b : Book | b.category)-rasSet{)");

// create a Query to evaluate our gquery expression
Query queryEval = ccl.createQuery(query);

// create another to check our constraint
Query constraintEval = ocl.createQuery(invariant);

List<Library> libraries = getLibraries(); // hypothetical source of libraries

/f only print the set of book categories for wvalid libraries
for (Library next : libraries) {
if (constraintEval.check(next)) {
// the OCL result type of our query expression is Set(BookCategory)
[@suppressWarnings(“unchecked™)
Set<BookCategory> categories = (Set<BookCategory>) queryEval.evaluate(next);

debugPrintf("¥s: ¥sX¥n\n", next.getName(), categories);

h
b

[Text for cut and paste]

One of the advantages of the Quer y API isthat a query’s evaluation environment can be reused for
multiple evaluations, as above. The extent of any classifier is only computed once. For convenience,
however, in situations where only a single evaluation is required, the OCL class provides shortcuts:

// check a single library

Library 1ib = getlibrary()}; // hypothetical source of a library

!/ check whether it satisfies the constraint
System.out.printf({"¥s valid: %b", lib.getName(), ocl.check(lib, inwvariant}};

[Text for cut and paste]

The Quer y API also provides methods that work on multiple elements. The first example, above, could
be written more succinctly as:
!/ only print the set of book categories for wvalid libraries
for (Library next : constraintEval.select(libraries}) {
@suppresskarnings("unchecked")
set<BookCategory> categories = (Set<BookCategory>) queryEval.evaluate(next);

system.out.printf("¥s: ¥s&n", next.getMame(), categories);
¥
[Text for cut and paste]

7.7. Parsing OCL Documents

As we saw in the Parsing Constraints and Queries topic, the OCL parser provides an _OCLHel per
API for parsing constraints embedded in models. OCL also permits constraints to be specified in a text
document, as an adjunct to the model. In this case, the concrete syntax for context declarations indicates
the context of constraints, equivalent to their placement in models.

As an example, consider the following Complete OCL document:

Eclipse OCL 5.0 182

../references/6315-check-all.txt
../references/6315-check-one.txt
../references/6315-check-quick.txt
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/helper/OCLHelper.html

Unified or Pivot Programmers Guide

import ‘platform:/pluginforg.eclipse.emf.examples. library/model /extlibrary.ecore’
package extlibrary

context Library
-- get all books with a title in a library and its branches (recursively)
def: getBooks(title : String) : Set(Book) =
books-:select(b | b.title = title)->asSet()->union
branches.getBooks(title)-rasset())

context Book
-- the library containing a book
def: library : Library = Library.allInstances()->any(books->includes(self))

-- book titles are unique within their library branch (and its sub-branches)
inv unique_title: not library.oclIsUndefined() implies
Library.getBooks(title) = Set{self}

endpackage

[Text for cut and paste]

7.7.1. The OCL Input

The Ecore binding provided an OCLI nput class to supervise the OCL source text, and the result of
parsing thedocument wasaLi st <Const r ai nt >. The Pivot binding usesan Xtext parser withaUML-
aligned output. The input text is therefore specified by a URI and loaded by the Xtext parser to create
a Concrete Syntax Resource. This may then be converted to the Pivot Abstract Syntax Resource. The
Abstract Syntax Resource has a conventional Model, Package, Class, Operation hierarchy in order to
provide a coherent composition context for the Constraints.

The Concrete Syntax Resource created by the Xtext parser
» comprises a CompleteOCL DocumentCS
 containing a PackageDeclarationCSfor ext | i brary
 containing a ClassifierContextDeclCSfor Li br ary

e containing aDefCS

 containing a DefOperationCS for get Books
 and a SpecificationCS

 and a ClassifierContextDecICS for Book

e containing an InvCSfor uni que_title

* containing a SpecificationCS
each SpecificationCS contains the parsed OCL Expression tree.
The complementing Abstract Syntax Resource
» comprisessaModel withapivot:/..../extlibrary. ocl URI
 containing a Package named ext | i brary
» containing aClassnamed Li br ary

 containing an Operation named get Books

e containing abody Constraint
 and a Class named Book

e containing an invariant Constraint for uni que_title
The complementing Abstract Syntax Resource has the same structure as the complemented Resource
The complemented Abstract Syntax Resource
e comprisesaModel withapivot:/..../extlibrary.ecore URI
» containing a Packagenamed ext | i brary

Eclipse OCL 5.0 183

../references/6320-extlibrary.ocl

Unified or Pivot Programmers Guide

» containing aClassnamed Li br ary
» and aClass named Book

There are therefore two Class objects named Li br ar y, one for each Resource. The objects are distinct
in so far as they belong to different resources, which can be separately serialized, and in so far as they
may appear distinct to OCL expressions that use reflective access. However they are logically merged
and the Met aModel Manager provides utility methods that allow the multiple objects to be accessed
as amerged object.

Giventhe URI of an OCL document, simply ask an OCL to parseit:

EPackage.Registry registry = new EPackageRegistryImpl(};
registry.put(EXTLibraryPackage.eN5_URI, EXTLibraryPackage.eINSTANCE);
OCL ocl = OCL.newInstance(registry);

// get an OCL text file via some hypothetical API
URI uri = getInputURI("/model/parsingDocumentsExample.ocl™);

Map<String, ExpressionInOCL»> constraintMap = new HashMap<String, ExpressionInOCL:();

// parse the contents as an OCL document
Resource asResource = occl.parse(uri);
for (Treelterator<EObject> tit = asRescurce.getAllContents(); tit.hasNext();) {
EObject next = tit.next();
if (next instanceof Constraint) {
Constraint constraint = (Constraint)next;
ExpressionInOCL expressionInOCL = ocl.getSpecification(constraint);
if (expressionInOCL != null) {
String name = constraint.getName();
if (name != null) {
constraintMap.put(name, expressionInOCL);
debugPrintf ("¥s: ¥s¥n\.n", name,
expressionIndCL. getBodyExpression());

}
b

[Text for cut and paste]

7.7.2. Accessing the Constraints

The OCL returns the list of constraints if they were successfully parsed. They are retained by the
OCL (available viathe get Const rai nt s() method at any time), and in particular, any definitions
of additional operations or attributes are available for subsequent constraint parsing. Any number of
OCL documents may be parsed by the same OCL instance, combined also with constraints parsed by
OCLHel per s. All of these constraints are retained by the OCL environment.

Library library = getLibrary()}; // get library from a hypothetical source
OCLHelper helper = ocl.createOCLHelper(EXTLibraryPackage.Literals.LIBRARY);
'/ use the constraints defined in the OCL document

'/ use the getBooks() additional cperation to find a book
ExpressionInOCL query = helper.createQuery(
"getBooks('Bleak House')-»asSequence()->fTirst()"};

Value bookValue = ccl.evaluate(library, query);
Boock book = (Book) bookWalue.asObject();
System.out.printf("Got bock: ¥s¥n", book);

// use the unique_title constraint to walidate the book
boolean isValid = ocl.check(book, constraintMap.get("unique_title"}};
System.out.printf({"validate book: bXn", isValid);

[Text for cut and paste]

Eclipse OCL 5.0 184

../references/6320-parsing.txt
../references/6320-accessing.txt

Unified or Pivot Programmers Guide

The source for these examples may be found in the org.eclipse.ocl.examples.xtext.tests
plugin in model/parsingDocumentsExample.ocl and in src/org/eclipse/ocl/examples/test/xtext/
PivotDocumentationExamples.java.

7.8. OCL Relationship to Metamodels

The Pivot-based OCL implementation provides indirect support for models defined using either the
Ecore or the UML metamodel (as implemented by the Eclipse EMF and UML2 projects), and an
extensibility APl that allows additional EMF-based metamodels to be plugged in. The indirection
through the UML-aligned Pivot metamodel makes OMG compliance much easier and decouples the
implementationm from particular bindings. Support for an alternate concrete metamodel representation
is therefore comparatively simple.

The OCL API implements support for different target metamodels viathe Envi r onnent Fact ory
interface. An implementation of this interface binds the metamodel’ s metaclasses to the generic type
parameters of the OCL_class. The metamodel-specific Envi r onnment _implementation constructed by
this factory implements the reflection capability required by OCL to discover the elements of the model
being constrained and the rel ationships between them.

7.8.1. The Pivot Metamodel Binding

A preliminary OCL binding for the Pivot metamodel is provided in the Indigo release
by the org. eclipse.ocl.exanpl es. pivot plug-in. It is planned to promote this to
org. eclipse. ocl . pi vot inthe Marsrelease.

The Pivot metamodel prototypes resolutions of the following problemsin the OCL 2.4 specification
» UML-alignment

» OCL Standard Library model

e XMI interchange

» Complete OCL implementability

The support for an OCL Standard Library model enables large parts of the OCL specification to be
captured by models. This makes the behavior mutable and extensible through definition of alternate or
extended library models. (The corresponding Ecore and UML bindings have an Ecore representation of
the library but much of its functionality is directly implemented and so immutable.)

The Pivot metamode is auto-generated by a package merge of
* selected parts of the UML metamodel

 additional OCL packages

 implementation-specific packages

The implementation-specific packages provide

« Visitors throughout the entire metamodel (OCL and MOF)
 Ecore extensions

It is anticipated that the performance advantages of a uniform compliant metamodel, without the
complexities of the templatesfrom theor g. ecl i pse. ocl plugin, will outweigh theinitial overhead
of converting an Ecore or UML metamodel to Pivot form. Once this has been demonstrated, the direct
Ecore and UML metamodels will be deprecated.

The Pivot binding is provided by the Pi vot Envi r onnent Fact ory_ class. For compatibility, as
a default, the Pivot environment uses the static EPackage registry to look up package names. This
default is deprecated sincethedomain of al | | nst ances() may bevery large when many models are
registered. It should therefore be supplied with an alternative package registry (for example, one local
toaResour ceSet) for relevant metamodels. The static registry is then used as a backup for package
lookups, but not for al | | nst ances() . The Pivot environment factory maintains the Pivot models
associated with

» Ecore metamodelsin use
* UML metamodelsin use
 Library modelsin use

Eclipse OCL 5.0 185

http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/EnvironmentFactory.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/OCL.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/Environment.html
http://download.eclipse.org/ocl/javadoc/5.0.0/org/eclipse/ocl/examples/pivot/utilities/PivotEnvironmentFactory.html

Unified or Pivot Programmers Guide

» Concrete Syntax source models
¢ OCLinEcore (rather than Ecore)
¢ Complete OCL
e OCL Standard Library

The Pivot binding for OCL will provide the full capabilities of the UML binding, but at present only
the Ecore facilities have been tested. The Pivot binding has the additional ability to support extensions
to thelibrary.

For applications that work exclusively with the Pivot binding for OCL, the
org. ecli pse. ocl . exanpl es. pi vot packagedefinesan OCL classthat providessimilar facilities
to the corresponding Ecore and UML binding equivalents.

The Pivot metamodel is used by Eclipse OCL for:

« al Xtext editors; editing, parsing, analysis and validation

* the Xtext OCL console; editor and evaluation

» EMF delegates using the http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot URI
 explicit use of the Pivot metamodel from Java

The Pivot metamodel is not used by Eclipse OCL for:

» OCL console editing and evaluation

* EMF delegates using the http://www.eclipse.org/emf/2002/Ecore/OCL/L PG URI
* Impact Analyzer.

* explicit use of the Ecore or UML bindings from Java

EMF delegates using the http://www.eclipse.org/emf/2002/Ecore/OCL virtua URI are redirected to
either http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot or http://www.eclipse.org/emf/2002/Ecore/
OCL/LPG by the setting of the“ Executor targeted by the default OCL delegate” preference setting, which
defaults to http://www.eclipse.org/emf/2002/Ecore/ OCL/LPG for compatibility.

Note that the Indigo and Juno OCLinEcore editor uses the http://www.eclipse.org/emf/2002/Ecore/
OCL/Pivot URI and so uses the Pivot Evaluator, whereas the Helios OCLinEcore editor used
the http://www.eclipse.org/lemf/2002/Ecore/lOCL URI and so the Ecore evaluator. A file using
the http://lwww.eclipse.org/emf/2002/Ecore/OCL URI will automatically be upgraded to the http://
www.eclipse.org/emf/2002/Ecore/OCL/Pivot URI when edited using the Indigo or Juno OCLinEcore
editors.

In Kepler and Luna, the OCLinEcore editor preserves any existing delegate URI selection. The new
“Preferred executor requested for OCL constraints’ preference determines the URI when no previous
setting is available. This defaults to http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot for backwards
compatibility. h2(#Pivot-1ds). 1ds

The Elementld hierarchy provides the simplest base level of metamodel representation. The Elementlds
feature

* identity

* unigueness
* thread-safety
* predictability
* hashcodes

Every primary hierachical metamodel object such as a Package, Type, Operation or Property has a
globally unique identity established by the package-class-feature path.

Auxiliary metamodel object such as a TemplateParameter, TuplePart or List-of-Parameter have alocally
unique identity supporting fast matching of tuples or single lookup for operation parameters.

7.8.2. Id Equality

Elementlds are unique, whereas metamodel elements are not; there may be many meta-models in
many applications all with their own Boolean PrimitiveTypelmpl instances. The equivalence of these

Eclipse OCL 5.0 186

Unified or Pivot Programmers Guide

elements may be established rapidly since each returns the same Typeld. BOOLEAN singleton from
PrimitiveTypelmpl.getTypel d().

7.8.3. IdManager

Uniqueness of Elementlds is enforced by the various getXxxld methods of the single
IdManager.INSTANCE. These methods are synchronized to ensure thread safety. Child hierarchical
objects are similarly mediated by their parent.

7.8.4. CollectionTypeld

CollectionTypelds are a degenerate form of specialization/generalization with a single template
parameter. The template parameter is declared explicitly in generalizations.

7.8.5. TupleTypeld

TupleTypes are self-contained, that is al external template parameter references with the part types
are bindings of a specialized tuple type whose generalization replaces those external references by the
template parameters of the generalization.

For instance given a declaration
Set(A)::op(B)() : Tuple(a:A, b:Bag(B), c:B)

Tuple(aA, b:Bag(B), c:B) is the (A,B) specidization of the Tuple(T1,T2)(aT1,b:Bag(T2),c:T2)
generalization.

7.8.6. LambdaTypeld

LambdaTypes are self-contained in the same way as tuples with specializations of generalizations.

7.8.7. Parameterlds

A Parameterlds identifies an ordered list of typeid suitable for identifying an operation’s parameter list
by a single object and hashcode.

A Parameterlds has no knowledge of its parent Operation and so Parameterlds are reused whenever
the typeid list arises. Note that collection typelds are always collectionTypelds, so there is no need for
multiplicities. Theresidual optional existenceisnot subject to overloading and isignoredin Parameterlds.

LambdaTypes reuse Parameterlds to capture the extended type list comprising the typeids of context-
type, result-type then parameter-types.

7.8.8. TuplePartld

A TuplePartld identifies a part of a Tuple. It has aname, typeid and index. The index isthe part position
in the set of parts in a parent tuple alphabetically sorted by name. It provides efficient access to a slot
position in atuple representation.

A TuplePartld has no knowledge of its parent Tuple and so TuplePartlds are reused whenever the same
combination of name, typeid and index arise.

7.8.9. TemplateParameterid

A TemplateParameterld identifies a template parameter in the ordered list of template parameters
in a parent templateable element. It has just an index in the parent list. For debugging purposes a
TemplateParameterld has a name such as $0 or $1.

A TemplateParameterld has no knowledge of its parent templateable element and so only a couple of
TemplateParameterlds ever exist. Three are statically defined as Typeld.T_1, T 2, T_3.

TemplateParameterld has no knowledge of whether it is a type or value parameter. Pragmatically a
TemplateParameterld extends a Typel d. (This design decision may need revision.)

7.8.10. Code Generation

Since the Elementlds are predictable and unique, code generation can assign them for computation once
in static variables so that large parts of the costs of model elememnt location can be performed at compile

Eclipse OCL 5.0 187

Unified or Pivot Programmers Guide

time. At class load time it is only necessary to construct/share the Elementld object. At run-time the
Elementld provides a hashcode to provode rapid lookup.

Eclipse OCL 5.0 188

Chapter 8. API Reference

8.1. Javadoc

The Javadoc for Eclipse OCL 5.0.0 (Luna) APIsmay befound by following the OCL 5.0.0 APl Reference
link.

8.2. Extension points

Thereis one extension point, but it is no longer clear that it has any useful functionality. Please consider
it deprecated.

Extension Points Reference.

Eclipse OCL 5.0 189

http://download.eclipse.org/ocl/javadoc/5.0.0/
../references/extension-points/org_eclipse_ocl_environments.html

Chapter 9. Building the OCL Project

This section contains some details on the way in which the OCL project is built. This should only be of
interest to users creating extension of the project.

9.1. GenModel GenAnnotations

The automated generation of models that form part of the OCL tooling exploits a number of
GenAnnotations to influence the auto-generated code.

9.1.1. http://www.eclipse.org/OCL/GenModel GenAnnotation Source

<genAnnotations source="http://www.eclipse.org/OCL/GenModel ">
<details key="Use Null Annotations" value="true"/>
</genAnnotations>

This GenAnnotation is also used by regular OCL code generation

9.1.1.1. Use Delegates

If the Use Delegateskey ispresent and hasatrue value genModel will generate code for OCL expressions
that delegates to the run-time interpreter, rather than generating Java code.

9.1.1.2. Use Null Annotations

If the Use Null Annotations key is present and has a true value the generated code will have @NonNull
and @NonNull annotations.

9.1.2. http://www.eclipse.org/OCL/GenModel/ToString

<genAnnotations source="http://www.eclipse.org/OCL/GenModel/ToString">
<details key="org.eclipse.ocl.examples.codegen.cgmodel.CGElement"
value="return & It;%org.eclipse.ocl.examples.codegen.analyzer. CG2StringVisitor%>.toString(this);"/>
</genAnnotations>

By default EMF generates a toString() method that identifies all attribute values. This cannot be
suppressed, only circumvented.

If the htt p: //www. ecl i pse. or g/ OCL/ GenModel / ToSt ri ng GenAnnotation is present the
default is changed to use an inherited implementation, which must be specified somewhere.

Specific implementations of toString may be provided as the values of detail entries whose key is the
qualified name of the interface class. Imports may be encoded with the implementation by enclosing the
fully qualified namein<% . . %.

9.1.3. http://www.eclipse.org/OCL/GenModel/Visitor

<genAnnotations source="http://www.eclipse.org/OCL/GenModel /Visitor">
<details key="Root Visitor Class"
value="org.eclipse.ocl.examples.codegen.cgmodel .util. CGModel Visitor"/>
<details key="Derived Visitor Class'
value="org.eclipse.ocl .examples.codegen.cgmodel .util. CGModel Visitor"/>
<details key="Visitable Classes’
value="org.eclipse.ocl .examples.codegen.cgmodel .CGElement" />
</genAnnotations>

The accept method for an hierarchical visitor pattern may be woven into the code using the ht t p: / /
www. ecl i pse. or g/ OCL/ GenModel / Vi si t or genAnnotation.
The implementation for class X XXX in the root packageis

@\ul | abl e R accept (@onNul | RootVisitord ass<R> visitor) {
return visitor.visitXXXX(this);

}
The implementation for class X XXX in the derived packageis

Eclipse OCL 5.0 190

Building the OCL Project

@\l | abl e R accept (@onNull Root VisitorC ass<R> visitor) {
return (R) (DerivedVisitord ass<?>)visitor).visitXXXX(this);

The direct cast to the derived type assumes that the caller has ensured that the visitor in use supports the
visitor interfaces for all objectsin use.

The null annotations or omitted unless null annotations have been enabled.

9.1.3.1. Root Visitor Class

Thefully qualified name of thevisitor class must be specified asthe value of the Root Visitor Classdetail.
This class defines the argument type of the accept method.

9.1.3.2. Derived Visitor Class

The fully qualified name of the derived visitor class must be specified as the value of the Derived Visitor
Class detail. This detail may be omitted for the root package.

9.1.3.3. Visitable Classes

An @Override annotation is generated for all implementations. This leads to an error where the
implementation is hot an override. The space-separated fully qualified names of all classes for which the
accpeis not an override must be specified as the value of the Visitable Classes detail.

9.1.3.4. Implementation Details

The support for accept is in tenpl at es/ nodel / Cl ass/insert.javaj eti nc where the
appropriate code is generated into the implementation file with help from OCL BuildGenM odel Util.

9.1.4. http://www.eclipse.org/OCL/GenModel/CopyAndPaste

<genAnnotations source="http://www.eclipse.org/ OCL/GenM odel/CopyAndPaste" >
<details key="org.eclipse.ocl .exampl es.xtext.markup.FigureElement"
value="model/FigureElement.javacopy"/>

</genAnnotations>

EMF alows custom code to be added to classes using an @Generated NOT comment annotation or no
annotation at all. These additions are preserved during regeneration, but may belost if the fileis deleted
and regenerated.

As an dternative, custom contributions may be pasted into class implementation files by specifying a
detail entry whose key is the qualified interface name of the class to be customised and whose value is
the project-relative name of afile providing text to be copied and pasted.

The copied text should be tab indented so that it matches the tab indentation of the auto-generated code.

The copied text may reference types that may need importing by encoding the fully qualified name in
<% ..%.

The customization files are conventionally given a *.copyjava file name and are placed in the model
folder alongside the *.genmodel.

9.1.4.1. Implementation Details

The support for copy and paste isin t enpl at es/ nodel / Cl ass/i nsert.javaj eti nc where
the referenced text is copied into the implementation file with help from OCL BuildGenM odel Util.

9.1.5. Implementation Details

9.1.5.1. org. eclipse.ocl.exanpl es. build

Theor g. ecl i pse. ocl . exanpl es. bui | d plugin hosts the build-time functionality that does not
need to bloat the distribution.

Modified JET templates are in the t enpl at es folder which . j et properti es prefixes to the
template path. The . pr oj ect hasanor g. ecl i pse. enf. codegen. j et. | JETNat ur e nature
and builder so that the custom JET templates are automatically built to thej et - gen source folder. The

Eclipse OCL 5.0 191

Building the OCL Project

. proj ect similarly hashasan or g. ecl i pse. xt ext. ui . shar ed. xt ext Nat ur e nature and
builder so that the Xtend templates are automatically built to the xt end- gen source folder. Both these
generated source folders are excluded from source control, since they are 100% auto-generated and they
do not form part of the distribution.

Custom JET templates ae declared by OCLBuildGenModel GeneratorAdapterFactory
which creates a OCLBuildGenClassGeneratorAdapter that replaces the normal
reference to org. eclipse. enf.codegen. ecore. tenpl at es. nodel . C ass by
org. ecli pse. ocl . exanpl es. bui | d. t enpl at es. nodel . O ass.

The custom build functionality isinstalled by the GenModel Set up workflow component,

9.1.5.2. org. eclipse.ocl.exanpl es. buil d. accel eo

The Acceleo builder and quiescent performance has not proved very satisfactory, consequently
the main templates have been migrated to Xtend. The remaining templates are in the
org. ecli pse. ocl . exanpl es. bui | d. accel eo plugin which can be kept closed most of the
time allowing operation without installing Acceleo at all.

9.2. ASM 3

OCI project endeavorsto maintain compatiobility beyond the latest rel ease, so when Lunamoved to ASM
5, there was a problem supporting installation on Juno and Kepler where only ASM 3 were available.
Either the codegen.asm3 or codegen.asmb plugin is used on the relevant platforms.

If you create alLunainstallation, ASM 5 isinstalled and ASM 3 is missing, so you get compiler errors.
Unfortuntately Lunadoesnot allow you to directly install ASM 3 from Orbit http://downl oad.eclipse.org/
tools/orbit/downloads/ to remedy the deficiency.

If you are very astute, you will install ASM 3 before you install ASM 5, but more likely it's too late,
so copy or install e.g. org.objectweb.asm_ 3.3.1.v201105211655.jar somewhere and then copy it to the
installation dropins folder. Restart Eclipse and the errors go away.

Eclipse OCL 5.0 192

Appendix A. Glossary

EMF Eclipse Modeling Framework
OCL Object Constraint Language
OMG Object Management Group
QVT Query View Transformation
RTF Revision Task Force

UML Unified Modeling Language

Eclipse OCL 5.0 193

	OCL Documentation
	Table of Contents
	Chapter 1. Overview and Getting Started
	1.1. What is OCL?
	1.2. How Does It Work?
	1.2.1. Editing
	1.2.2. Execution
	1.2.3. Debugging
	1.2.4. Testing

	1.3. Eclipse OCL is Extensible
	1.4. Who Uses OCL and Eclipse OCL?
	1.5. Who is Behind Eclipse OCL?
	1.6. Getting Started

	Chapter 2. Users Guide
	2.1. The two Eclipse OCLs
	2.1.1. The Classic Eclipse OCL metamodels
	2.1.2. The Unified or Pivot Eclipse OCL metamodel
	2.1.3. The transition
	2.1.4. APIs
	2.1.4.1. Tool APIs
	2.1.4.2. Internal APIs
	2.1.4.3. Versions

	2.2. The Essential OCL Language
	2.2.1. Syntax
	2.2.1.1. Grammar Implementation
	2.2.1.2. Grammar Approach
	2.2.1.3. OCL Expression
	2.2.1.4. PrimaryExp
	2.2.1.5. SelfExp
	2.2.1.6. PrimitiveLiteralExp
	2.2.1.7. NumberLiteralExp
	2.2.1.8. StringLiteralExp
	2.2.1.9. BooleanLiteralExp
	2.2.1.10. UnlimitedNaturalLiteralExp
	2.2.1.11. InvalidLiteralExp
	2.2.1.12. NullLiteralExp
	2.2.1.13. CollectionLiteralExp
	2.2.1.14. CollectionLiteralPart
	2.2.1.15. TupleLiteralExp
	2.2.1.16. TupleLiteralPart
	2.2.1.17. TypeLiteralExp
	2.2.1.18. NestedExp
	2.2.1.19. IfExp
	2.2.1.20. LetExp
	2.2.1.21. NameExp
	2.2.1.22. IndexExp
	2.2.1.23. NavigatingExp
	2.2.1.24. NavigatingArg
	2.2.1.25. PrefixedExp
	2.2.1.26. InfixedExp
	2.2.1.27. NavigationOperators
	2.2.1.28. TypeExp
	2.2.1.29. TypeNameExp
	2.2.1.30. TypeLiteral
	2.2.1.31. PrimitiveType
	2.2.1.32. CollectionType
	2.2.1.33. TupleType
	2.2.1.34. TuplePart
	2.2.1.35. UnreservedName
	2.2.1.36. UnrestrictedName

	2.3. The OCLinEcore Language
	2.3.1. Syntax
	2.3.1.1. Grammar Implementation
	2.3.1.2. Module
	2.3.1.3. Package
	2.3.1.4. Classifier
	2.3.1.5. DataType
	2.3.1.6. Enumeration
	2.3.1.7. EnumerationLiteral
	2.3.1.8. Class
	2.3.1.9. StructuralFeature
	2.3.1.10. Attribute
	2.3.1.11. Reference
	2.3.1.12. Operation
	2.3.1.13. Parameter
	2.3.1.14. Types
	2.3.1.15. AnnotationElement
	2.3.1.16. Annotation
	2.3.1.17. Detail
	2.3.1.18. Documentation
	2.3.1.19. Constraints
	2.3.1.20. Terminals
	2.3.1.21. Names
	2.3.1.22. Comments

	2.3.2. Limitations

	2.4. The Complete OCL Language
	2.4.1. Syntax
	2.4.1.1. Grammar Implementation
	2.4.1.2. Complete OCL Document
	2.4.1.3. PackageDeclaration
	2.4.1.4. ContextDecl
	2.4.1.5. ClassifierContextDecl
	2.4.1.6. Def
	2.4.1.7. Inv
	2.4.1.8. OperationContextDecl
	2.4.1.9. Parameter
	2.4.1.10. Body
	2.4.1.11. Post
	2.4.1.12. Pre
	2.4.1.13. PropertyContextDecl
	2.4.1.14. Init
	2.4.1.15. Der
	2.4.1.16. Specification
	2.4.1.17. NavigatingExp
	2.4.1.18. NavigationOperators
	2.4.1.19. UnreservedName
	2.4.1.20. UnrestrictedName

	2.5. The OCL Standard Library Language
	2.5.1. Syntax
	2.5.1.1. Grammar Implementation
	2.5.1.2. OCL Standard Library Document
	2.5.1.3. Precedence
	2.5.1.4. Package
	2.5.1.5. Class and Classifier
	2.5.1.6. Inv
	2.5.1.7. Operation
	2.5.1.8. LibOperation
	2.5.1.9. LibIteration
	2.5.1.10. Iterator
	2.5.1.11. Accumulator
	2.5.1.12. Parameter
	2.5.1.13. Pre
	2.5.1.14. Post
	2.5.1.15. LibProperty
	2.5.1.16. Specification

	2.6. Editors
	2.6.1. Syntax coloring
	2.6.2. Validation
	2.6.3. Hover Text
	2.6.4. Content Assist
	2.6.5. Code Templates
	2.6.6. Open Declaration

	2.7. Console
	2.7.1. Context Object Selection
	2.7.2. Editing
	2.7.3. Editor Keys
	2.7.4. Results
	2.7.5. Tool Bar
	2.7.5.1. Ecore/UML binding
	2.7.5.2. M1/M2
	2.7.5.3. Clear Console
	2.7.5.4. Close Console
	2.7.5.5. Debug
	2.7.5.6. Load/Save an expression

	2.8. Validity View (new in Luna)
	2.8.1. View Tool Bar
	2.8.1.1. Expand All
	2.8.1.2. Collapse All
	2.8.1.3. Pin
	2.8.1.4. Refresh
	2.8.1.5. Run
	2.8.1.6. Filter
	2.8.1.7. Save
	html
	model
	text

	2.8.2. Model Elements Pane
	2.8.2.1. Model Elements Tool Bar
	Expand All
	Collapse All
	Enable All
	Disable All
	Show/Hide disabled

	2.8.2.2. Text Filter
	2.8.2.3. Model Elements tree
	2.8.2.4. Model Elements Context Menu
	Validate Selection
	Debug Single Enabled Selection
	Show in Editor

	2.8.3. Metamodel Constraints Pane
	2.8.3.1. Metamodel Constraints Tool Bar
	Expand All
	Collapse All
	Enable All
	Disable All
	Show/Hide disabled

	2.8.3.2. Text Filter
	2.8.3.3. Metamodel Constraints tree
	2.8.3.4. Metamodel Constraints Context Menu
	Validate Selection
	Debug Single Enabled Selection
	Show in Editor

	2.8.4. Constraint Locators
	2.8.4.1. org.eclipse.ocl.examples.emf.validation.validity.locator.EClassConstraintLocator
	2.8.4.2. org.eclipse.ocl.examples.emf.validation.validity.locator.EValidatorConstraintLocator
	2.8.4.3. org.eclipse.ocl.examples.validity.locator.DelegateUIConstraintLocator
	2.8.4.4. org.eclipse.ocl.examples.validity.locator.PivotUIConstraintLocator
	2.8.4.5. org.eclipse.ocl.examples.validity.locator.UMLUIConstraintLocator

	2.9. Debugger (new in Luna)
	2.9.1. Launching
	2.9.1.1. Selected model object and manually entered expression
	2.9.1.2. Selected model object/constraint combination
	2.9.1.3. Selected model object and selected constraint

	2.9.2. Stepping
	2.9.2.1. Step Into
	2.9.2.2. Step Over
	2.9.2.3. Step Return
	2.9.2.4. Resume

	2.9.3. Variables View
	2.9.4. Breakpoints View
	2.9.5. Outline View

	2.10. OCL Integration
	2.10.1. OCL execution in Ecore / EMF Delegates
	2.10.2. Custom Validation Messages
	2.10.2.1. Underlying support
	2.10.2.2. Editor syntax

	2.10.3. CompleteOCL Validation
	2.10.3.1. Browse Registered OCL Files...
	2.10.3.2. Browse File System...
	2.10.3.3. Browse Workspace...

	2.10.4. OCLinEcore for Xtext Validation
	2.10.5. Complete OCL for Xtext Validation

	2.11. OCL in UML (using Papyrus)
	2.11.1. UML Integration
	2.11.2. Class Diagram
	2.11.2.1. Class Invariant
	2.11.2.2. Operation Precondition, Postcondition and Body
	2.11.2.3. Property Initializers
	2.11.2.4. Profile Constraint

	2.11.3. State Machine Diagram
	2.11.3.1. Statemachine Constraint
	2.11.3.2. Statemachine Transition Guard

	2.12. User Interface
	2.12.1. Project Property Pages
	2.12.2. Workspace Preference Pages
	2.12.3. Overall Options
	2.12.3.1. Default Delegation Mode
	http://www.eclipse.org/emf/2002/Ecore/OCL/LPG
	http://www.eclipse.org/emf/2002/Ecore/OCL/Pivot
	http://www.eclipse.org/emf/2002/Ecore/OCL

	2.12.3.2. Code Generation Mode
	Delegate for interpretation at run-time
	Generate Java code in xxxBodies classes

	2.12.4. Ecore and UML Options
	2.12.5. UML Options
	2.12.6. Model Registry
	2.12.7. Syntax Coloring
	2.12.8. Editor Templates
	2.12.9. OCLinEcore Options

	Chapter 3. The OCL Standard Library
	3.1. Precedences
	3.2. Bag(T)
	3.3. Boolean
	3.4. Class
	3.5. Collection(T)
	3.6. Enumeration
	3.7. EnumerationLiteral
	3.8. Integer
	3.9. Metaclass(T)
	3.10. OclAny
	3.11. OclComparable
	3.12. OclElement
	3.13. OclInvalid
	3.14. OclLambda
	3.15. OclMessage
	3.16. OclSelf
	3.17. OclState
	3.18. OclSummable
	3.19. OclTuple
	3.20. OclType
	3.21. OclVoid
	3.22. OrderedCollection(T)
	3.23. OrderedSet(T)
	3.24. Real
	3.25. Sequence(T)
	3.26. Set(T)
	3.27. State
	3.28. String
	3.29. Type
	3.30. UniqueCollection(T)
	3.31. UnlimitedNatural

	Chapter 4. Tutorials
	4.1. OCLinEcore tutorial
	4.1.1. Overview
	4.1.2. References
	4.1.3. Installing the Eclipse OCL Examples
	4.1.4. Troubleshooting
	4.1.5. Using the OCLinEcore text editor for Ecore
	4.1.5.1. Create a New EMF Project
	4.1.5.2. Create a New Ecore Model
	4.1.5.3. Edit Ecore Model as OCLinEcore
	4.1.5.4. The Tutorial Meta-Model

	4.1.6. Create a Dynamic Model Instance
	4.1.7. Enrich the meta-model with OCL
	4.1.8. The OCL Console
	4.1.9. Helper Features and Operations
	4.1.10. Generating Java Code
	4.1.10.1. Java Details
	4.1.10.2. API Invariants

	4.1.11. Summary

	4.2. Complete OCL tutorial
	4.2.1. Overview
	4.2.2. Complete OCL Utility
	4.2.3. Load Complete OCL Tutorial Example Project
	4.2.4. Complete OCL Language Overview
	4.2.4.1. import declarations
	4.2.4.2. package context declaration
	4.2.4.3. classifier context declaration
	4.2.4.4. feature definitions
	4.2.4.5. class invariants
	4.2.4.6. custom messages
	4.2.4.7. operation and property context declarations

	4.2.5. OCL->Load Document Menu Action
	4.2.6. Example Complete OCL complements for Ecore
	4.2.6.1. DerivationIsVolatile
	4.2.6.2. DerivationIsTransient
	4.2.6.3. DerivationIsNotComposed
	4.2.6.4. DerivationWithOppositeHasOppositeDerivation
	4.2.6.5. DerivationIsUninitialized
	4.2.6.6. DerivationDoesNotResolveProxies

	4.2.7. Validating Ecore with additional Complete OCL
	4.2.8. Editing the Complete OCL
	4.2.9. Example Complete OCL complements for UML
	4.2.10. Example Complete OCL complements for Xtext
	4.2.10.1. NoAnonymousImports
	4.2.10.2. NoActions
	4.2.10.3. CamelCaseName
	4.2.10.4. UpperName

	4.2.11. Complete OCL Editor
	4.2.12. Royal and Loyal Example
	4.2.13. Summary

	4.3. Code Generation tutorial
	4.3.1. Load OCLinEcore Tutorial Example Project
	4.3.2. Direct code
	4.3.3. Using a GenAnnotation

	4.4. Debugger tutorial
	4.4.1. Load OCLinEcore Tutorial Example Project
	4.4.2. The OCL Debugger
	4.4.3. Very Simple Debug session
	4.4.3.1. Starting the debugger
	4.4.3.2. Exploring Variables
	4.4.3.3. Stepping Execution

	4.4.4. Debugging a Validation failure
	4.4.5. Debugging Complete OCL validation failure
	4.4.6. Console experiments
	4.4.7. Longer range stepping
	4.4.8. Break points

	4.5. Validation tutorial
	4.5.1. Load Complete OCL Tutorial Example Project
	4.5.2. Load Test Model
	4.5.3. EMF Validation
	4.5.3.1. Validaty View Validation
	4.5.3.2. Filtering by Root Models
	4.5.3.3. Filtering by Status
	4.5.3.4. Debugging constraints

	4.6. Working with Classic OCL
	4.6.1. Overview
	4.6.2. References
	4.6.3. Parsing OCL Expressions
	4.6.4. Parsing OCL Constraints
	4.6.5. Evaluating OCL Expressions and Constraints
	4.6.6. Implementing Content Assist
	4.6.7. Working with the AST
	4.6.8. Serialization
	4.6.9. Summary

	4.7. Installing the Eclipse OCL Examples and Editors
	4.7.1. Troubleshooting

	Chapter 5. Examples
	5.1. Royal and Loyal Example Project
	5.2. Empty Example Project
	5.3. OCLinEcore Tutorial Example Project
	5.4. Complete OCL Tutorial Example Project
	5.5. OCL Interpreter Example
	5.5.1. Introduction
	5.5.2. References
	5.5.3. Description
	5.5.4. Support for Ecore and UML Models
	5.5.5. Example Code

	Chapter 6. Classic Ecore/UML Programmers Guide
	6.1. Parsing Constraints and Queries
	6.1.1. The OCL Environment
	6.1.2. Creating an OCL Environment
	6.1.3. The OCL Helper
	6.1.4. Operation and Attribute Contexts

	6.2. Evaluating Constraints and Queries
	6.2.1. The OCL Query

	6.3. Parsing OCL Documents
	6.3.1. The OCL Input
	6.3.2. Accessing the Constraints

	6.4. OCL Relationship to Metamodels
	6.4.1. The Ecore Metamodel Binding
	6.4.2. The UML Metamodel Binding
	6.4.3. Syntax Completion Choices

	6.5. OCL Abstract Syntax Model
	6.5.1. The Visitable and Visitor Interfaces
	6.5.2. Implementing a Visitor
	6.5.3. The OppositePropertyCallExp Extension

	6.6. Customizing the Environment
	6.6.1. Defining Global Variables
	6.6.2. Defining Helper Operations in Java
	6.6.3. Selecting a Package Lookup Strategy
	6.6.4. Customizing Hidden Opposite Lookup and Navigation

	6.7. OCL Persistence
	6.7.1. The Type Resolver

	6.8. Creating Metamodel Bindings
	6.8.1. The OCL Abstract Syntax Model

	6.9. Incrementally Re-Evaluating OCL Expressions Using the Impact Analyzer
	6.9.1. Using the Impact Analyzer in EMF Editors
	6.9.2. Algorithm Outline
	6.9.3. Impact Analyzer Configuration, Scopes

	6.10. Delegates
	6.10.1. GenModel Settings
	6.10.2. OCL Delegate URIs
	6.10.3. Standalone Initialization
	6.10.4. Invocation Delegates
	6.10.5. Setting Delegates
	6.10.6. Validation Delegates
	6.10.7. Validation Messages
	6.10.8. Query Delegates

	6.11. Ecore/UML Standalone Configuration
	6.11.1. Ecore
	6.11.2. UML
	6.11.3. Xtext Editors

	Chapter 7. Unified or Pivot Programmers Guide
	7.1. Validators
	7.1.1. OCLinEcoreEObjectValidator
	7.1.2. CompleteOCLEObjectValidator

	7.2. The Pivot Evaluator
	7.2.1. The Evolving Pivot Value System
	7.2.2. The Pivot Value System
	7.2.2.1. Value Conversions
	7.2.2.2. Polymorphic Integers
	7.2.2.3. Polymorphic Collections
	7.2.2.4. Polymorphic Objects

	7.2.3. The Pivot Evaluator Type System
	7.2.4. The Pivot Evaluator Implementation System
	7.2.5. Polymorphic Implementations

	7.3. Pivot Standalone Configuration
	7.3.1. Models
	7.3.2. OCL Standard Library
	7.3.3. Pivot Delegates
	7.3.4. Xtext Parsers
	7.3.5. platform:/plugin and platform:/resource URIs
	7.3.6. Classpath

	7.4. Pivot Thread Safety
	7.4.1. Code Generated Evaluation
	7.4.1.1. Design Notes

	7.4.2. Interpreted Evaluation
	7.4.3. OCL Analysis

	7.5. Parsing Constraints and Queries
	7.5.1. The OCL Environment
	7.5.2. Creating an OCL Environment
	7.5.3. The OCL Helper
	7.5.4. Operation and Attribute Contexts

	7.6. Evaluating Constraints and Queries
	7.6.1. The OCL Query

	7.7. Parsing OCL Documents
	7.7.1. The OCL Input
	7.7.2. Accessing the Constraints

	7.8. OCL Relationship to Metamodels
	7.8.1. The Pivot Metamodel Binding
	7.8.2. Id Equality
	7.8.3. IdManager
	7.8.4. CollectionTypeId
	7.8.5. TupleTypeId
	7.8.6. LambdaTypeId
	7.8.7. ParameterIds
	7.8.8. TuplePartId
	7.8.9. TemplateParameterId
	7.8.10. Code Generation

	Chapter 8. API Reference
	8.1. Javadoc
	8.2. Extension points

	Chapter 9. Building the OCL Project
	9.1. GenModel GenAnnotations
	9.1.1. http://www.eclipse.org/OCL/GenModel GenAnnotation Source
	9.1.1.1. Use Delegates
	9.1.1.2. Use Null Annotations

	9.1.2. http://www.eclipse.org/OCL/GenModel/ToString
	9.1.3. http://www.eclipse.org/OCL/GenModel/Visitor
	9.1.3.1. Root Visitor Class
	9.1.3.2. Derived Visitor Class
	9.1.3.3. Visitable Classes
	9.1.3.4. Implementation Details

	9.1.4. http://www.eclipse.org/OCL/GenModel/CopyAndPaste
	9.1.4.1. Implementation Details

	9.1.5. Implementation Details
	9.1.5.1. org.eclipse.ocl.examples.build
	9.1.5.2. org.eclipse.ocl.examples.build.acceleo

	9.2. ASM 3

	Appendix A. Glossary

